
Stat425 F. Liang

Matrices and Vectors

• Vector scalar multiplication and addition operations:

2un×1 + 3vn×1 = 2


u1

u2

. . .
un

+ 3


v1

v2

. . .
vn

 =


2u1 + 3v1

2u2 + 3v2

. . .
2un + 3vn


• The inner (dot or cross) product of two vectors is defined to be

utv =
∑
i

uivi = ‖u‖ · ‖v‖ cos(θ),

where ‖u‖ denotes the norm of a vector

‖u‖ =
√

utu =

√∑
i

u2
i ,

and θ is the angle between the two vectors.

• A unit vector is a vector whose norm is 1.

• When two vectors are orthogonal, cos(θ) = 0, therefore utv = 0, denoted by u ⊥ v.

• The Euclidean distance between two vectors u and v is ‖u− v‖.

• A set of vectors v1, . . . ,vm is said to be linear independent, if

c1v1 + · · ·+ cmvm = 0 iff c1 = · · · = cm = 0.

Otherwise they are linear dependent.

In other words, if a set of vectors are linear independent, then no one can be ex-
pressed as a linear combination of the others; if they are linear dependent, then there
exists at least one vector, say v2, which can be written as a linear combination of
v1,v3, . . . ,vm.

• If A is a matrix, its transpose is denoted by AT . The trace of a square matrix, denoted
by tr(A), is the sum of its diagonal elements.

• If A is a square matrix, its inverse is another matrix C such that AC = I. We usually
denote the inverse matrix by A−1. Not all square matrices have an inverse. Only full
rank or non-singular square matrices has an inverse, and the corresponding inverse is
unique.

• Suppose we have an n× p matrix X with n ≥ p.

– Xn×p is not full rank ⇐⇒ its columns are linear dependent.

– Xn×p is full rank ⇐⇒ its columns are linear independent.

If X is full rank, then (XtX) is a p× p full-rank square matrix, so (XtX)−1 exists.
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Means and Variances of Random Variables

• Covariance of X and Y

Cov(X,Y ) = E
[
(X − µX)(Y − µY )

]
= E(XY )− µXµY

– Connection with Variance: Cov(X,X) = Var(X);

– Symmetric: Cov(X,Y ) = Cov(Y,X);

– Linearity with scale change, but invariant with location change

Cov(aX + b, Y ) = aCov(X,Y ), Cov(X + Y,W ) = Cov(X,W ) + Cov(Y,W ).

Cov(aX + bY, cX + dY ) = acVar(X) + bdVar(Y )

+(ad+ bc)Cov(X,Y )

Var(aX + bY ) = a2Var(X) + 2abCov(X,Y ) + b2Var(Y ).

– Cauchy-Schwarz Inequality

|Cov(X,Y )| ≤
√

Var(X)Var(Y )

• Correlation Coefficient

ρXY =
σXY
σXσY

=
Cov(X,Y )√

Var(X)Var(Y )
.

– −1 ≤ ρXY ≤ 1, due to the CS inequality.

– ρXY = ±1 if and only if X and Y are linear functions of each other.

– ρXY = 0 if and only if Cov(X,Y ) = 0, then we say X and Y are uncorrelated.

– The magnitude of ρXY reflects only the linear dependence between X and Y .
So it is possible that Y = g(X) where g is a one-to-one map (i.e., X totally
determines Y ), but ρXY is small.

– If X and Y are independent, then ρXY = 0, but the reverse doesn’t hold.
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• Mean and Variance of Sum of Random Variables. Let X1, . . . , Xn be n random vari-
ables and a0, a1, . . . , an be (n+ 1) constants. Define U = a0 + a1X1 + · · ·+ anXn.

EU = E
(
a0 + a1X1 + · · ·+ anXn

)
= a0 + a1EX1 + · · ·+ anEXn

Var(U) = Var
(
a0 + a1X1 + · · ·+ anXn

)
=

n∑
i=1

a2
iVar(Xi) +

∑
i 6=j

aiajCov(Xi, Xj)

=

n∑
i=1

a2
iVar(Xi) + 2

∑
i<j

aiajCov(Xi, Xj)

If Xi’s are uncorrelated, i.e., Cov(Xi, Xj) = 0 for all i 6= j, then variance of the sum
is equal to the sum of variances.

• Conditional Expectations.

E(X|Y = y) =
∑
x

x · P (X = x|Y = y) =
∑
x

x · pX|Y (x|y).

E(X|Y = y) =

∫
x · fX|Y (x|y)dx

What does the symbol E(X|Y ) mean? You can view it as a function of Y , i.e.,
E(X|Y ) = g(Y ) with its value at Y = y given by

g(y) = E(X | Y = y).

Therefore E(X|Y ) is a random variable. We can talk about its distribution and com-
pute its mean and variance.

Useful properties of conditional expectations and variances

E
[
E(X | Y )

]
= EX (Iterative rule)

Var(X) = E(Var(X|Y )) + Var(E(X|Y )) (Variance decomposition)
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• The mean of a random vector Zm×1 is an m-by-1 vector with the i-th element equal
to E(Zi).

µm×1 = E[Z] =

 EZ1

· · ·
EZm

 .

• The covariance of Zm×1 is a symmetric m-by-m matrix with the (i, j)-th element
equal to Cov(Zi, Zj).

Σm×m = Cov(Z) = E
[
(Z− µ)(Z− µ)t

]
=

 Var(Z1) · · · Cov(Z1, Zm)
· · · · · · · · ·

Cov(Zm, Z1) · · · Var(Zm)

 .

• Affine transformations: W = an×1 + Bn×mZ,

E[W] = a + Bµ, Cov(W) = BΣBt.

Especially, for W = v1Z1 + · · · vmZm = vtZ,

E[W ] = vtµ =
m∑
i=1

viµi,

Var(W ) = vtΣv =
m∑
i=1

v2
i Var(Zi) + 2

∑
i<j

vivjCov(Zi, Zj).
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The Univariate Normal Distribution

• Z ∼ N(0, 1) is called the standard normal rv. Φ(z) denotes its CDF.

Φ(−z) = 1− Φ(z), z > 0.

• X ∼ N(µ, σ2), then

• X = µ+ σZN(µ, σ2). pdf, mgf, mean and variance.

• aX + b ∼ N(aµ+ b, a2σ2). Specially, 1
σ (X − µ) ∼ N(0, 1).

• Linear combinations of independent normal rv’s are normal.

• Zi iid ∼ N(0, 1). What’s the distribution of W = Z2
1 + · · ·+ Z2

n?

MW (t) = EetW =
n∏
i=1

EetZ
2
i = (1− 2t)−n/2.

So W ∼ Ga(n2 ,
1
2) = χ2

n.

E(W ) = n, Var(W ) = 2n.

fW (w) =
(1

2)n/2

Γ(n2 )
w

n
2
−1e−

w
2 , w > 0.

• Z ∼ N(0, 1) and W ∼ χ2
n are independent, then Z√

W/n
∼ Tn (student t-dist with n

degrees of freedom).

How to derive the pdf of T = Z√
W/n

? Consider the following bivariate transformation

T =
Z√
W/n

, V = W.

Then

fT (t) =

∫
f(t, v)dv =

Γ(n+1
2 )

√
nπΓ(n2 )

(
1 +

t2

n

)−n+1
2

.
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The Bivariate Normal Distribution

(Y1, Y2) ∼ N2(µ,Σ), where

µ =

(
µ1

µ2

)
, Σ =

(
σ2

1 σ12

σ12 σ2
2

)
=

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

• µ1 and σ2
1 are the mean and variance, respectively, of Y1;

• µ2 and σ2
2 are the mean and variance, respectively, of Y2;

• σ12 = ρσ1σ2 is the covariance of Y1 and Y2 with ρ being the correlation coefficient.

Assume ρ2 < 1, and the joint pdf f(y1, y2) is given by

1

2πσ1σ2

√
1− ρ2

×

exp

{
− 1

2(1− ρ2)

[(y1 − µ1

σ1

)2
− 2ρ

(y1 − µ1

σ1

)(y2 − µ2

σ2

)
+
(y2 − µ2

σ2

)2
]}

=
1

2π|Σ|1/2
exp

{
−1

2
(y − µ)tΣ−1(y − µ)

}
.

Note that |Σ| = σ2
1σ

2
2(1− ρ2) and when ρ2 < 1,

Σ−1 =
1

σ2
1σ

2
2(1− ρ2)

[
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

]
.

• Marginals: Yi ∼ N(µi, σ
2
i ) where i = 1, 2.

• Conditionals:

Y1 | Y2 = y2 ∼ N
(
µ1 + ρ

σ1

σ2
(y2 − µ2), (1− ρ2)σ2

1

)
Y2 | Y1 = y1 ∼ N

(
µ2 + ρ

σ2

σ1
(y1 − µ1), (1− ρ2)σ2

2

)
• Linear Combinations:

aY1 + bY2 ∼ N
(
aµ1 + bµ2, a

2σ2
1 + 2abρσ1σ2 + b2σ2

2

)
• Uncorrelated = Independent: ρ = 0 implies Y1 and Y2 are independent.

• Note: All the statements above assume that the joint distribution of (Y1, Y2) is normal.
However,

Y1 ∼ Norm, Y2 ∼ Norm does NOT imply (Y1, Y2) ∼ Norm.

So if Y1 and Y2 are marginally normally distributed with correlation 0, we cannot
conclude that Y1 and Y2 are independent.
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The Multivariate Normal Distribution

• Let Z = (Z1, . . . , Zn) where Zi’s are iid ∼ N(0, 1) rv’s. Then Z follows a multivariate
normal distribution, denoted by Nn(0, In), with

f(z) =
n∏
i=1

1√
2π
e−z

2
i =

1

(2π)n/2
exp

{
− 1

2

n∑
i=1

z2
i

}
=

1

(2π)n/2
exp

{
− 1

2
ztz
}
,

M(t) = E[exp{ttZ}] =
n∏
i=1

EetiZi = exp
{1

2
‖t‖2

}
,

and
E(Z) = 0, Cov(Z) = In.

• We can define a general multivariate normal distribution via affine transformations.

Xp×1 = µp×1 +Bp×nZn×1,

then X is multivariate normal with mean µ and covariance matrix Σ = BBt, denoted
by

X ∼ Np(µ,Σ),

with

MX(t) = exp
{

ttµ +
1

2
ttΣt

}
.

From the expression of its mgf above, we know that a multivariate normal distribution
is completely determined by its mean µ and covariance matrix Σ.

Why don’t we define X via its pdf?

• Recall the definition of the covariance matrix for a random vector. Any covariance
matrix Σp×p should be symmetric and nonnegative definite, i.e.,

atΣa ≥ 0, for any a ∈ Rp.

The B matrix in Σ = BBt can be viewed as the square root of Σ, but there are many
such square roots. So it is possible to obtain X1 and X2 from two different transforma-
tions, but they end up having the same distribution (see the example in John’s notes).

Any symmetric nonnegative definite matrix has a spectral decomposition

Σ = ΓtΛΓ, Λ = diag(λi)
p
i=1,

where λ1 ≥ λ2 · · · ≥ λp ≥ 0, and Γn×n is a orthonormal matrix, i.e., ΓΓt = In.

• If λp > 0, then Σ is positive definite, so |Σ| > 0 and Σ−1 = ΓΛ−1Γt exists. Then the
pdf of Np(µ,Σ) is given by

f(x) =
1

(2π)p/2|Σ|1/2
exp

{
−1

2
(x− µ)tΣ−1(x− µ)

}
.
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• Properties of the multivariate normal

– Affine transformations of multivariate normals are still normal:

X ∼ Nn(µ,Σ) =⇒ Am×nX + bm×1 ∼ Nm(Aµ + b, AΣAt).

– Marginals of a normal are still normal.

– Conditionals of a normal are still normal.

X1|X2 ∼ Nm
(
µ1 + Σ12Σ−1

22 (X2 − µ2),Σ11 − Σ12Σ−1
22 Σ21

)
– For multivariate normals, uncorrelated = independent.

Note: All the statements above assume that the joint distribution is normal. For
example,

X1 ∼ Norm, X2 ∼ Norm does NOT imply (X1,X2) ∼ Norm.

So if X1 and X2 are marginally normally distributed with correlation 0, we cannot
conclude that X1 and X2 are independent.
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Distributions Related to Normal

• If Z ∼ Nn(0, In), then ‖Z‖2 ∼ χ2
n.

If Z ∼ Nn(0, σ2In), then ‖Z‖2/σ2 ∼ χ2
n.

If X ∼ Nn(µ,Σ) and Σ−1 exists, then (X− µ)tΣ−1(X− µ) ∼ χ2
n.

If X ∼ Nn(0,H) where H is a projection matrix (i.e., H is symmetric and idempotent),
then XtHX ∼ χ2

m with m = trace(H). Examples of H: 1 0 0
0 1 0
0 0 0

 ,

 1
2

1
2 0

1
2

1
2 0

0 0 0

 .

• Z ∼ N(0, 1) and W ∼ χ2
n are independent, then

Z√
W
∼ Tn (student t-dist).

W1 ∼ χ2
n, W2 ∼ χ2

m and they are independent, then

W1

W2
∼ Fn,m.

Chi-square and Student t-dist have one df (degree of freedom) and F-dist has two dfs.

• X1, . . . , Xn ∼ N(µ, σ2), then X̄ and (X1 − X̄, . . . , Xn − X̄) are independent,

X̄ ∼ N(µ,
σ2

n
),

n∑
i=1

(Xi − X̄)2 ∼ χ2
n−1,

therefore

T =
X̄ − µ
S/
√
n
∼ Tn−1,

where S2 =
∑

i(Xi − X̄)2/(n− 1) is the sample variance.
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Some Basic Concepts of Statistical Inference

Suppose we have a rv X that has a pdf/pmf denoted by f(x; θ) or p(x; θ), where θ is
called the parameter, e.g., p in Bern(p) and (θ, σ2) in N(θ, σ2).

Previously, we focus on problems where the value of θ is given, and we calculate various
quantities related to the distribution, e.g., the mean, the variance, and various probabilities.

Now we focus on problems where θ is unknown and we try to estimate various (unknown)
quantities related to this distribution, after observing a random sample (X1, . . . , Xn) from
this distribution.

Some jargons:

• Parameter θ

• Random sample: (X1, . . . , Xn) iid.

• Statistic T = T (X1, . . . , Xn): a function of the sample, which is also random.

• Estimator θ̂ = θ̂(X1, . . . , Xn) of θ is a function of the sample, i.e., a statistic. Given
an observed sample (X1 = x1, . . . , Xn = xn), the value of θ̂(x1, . . . , xn) is called an
estimate of θ. So, an estimator is a random variable, while an estimate is a real
number.

• Hypothesis testing: decide between the null hypothesis H0 : θ ≥ θ0 and the alternative
hypothesis Ha : θ < θ0 where θ0 denotes a fixed value for the parameter θ.

• Prediction

Descriptive Statistics

• Given a set of random samples, (x1, . . . , xn), its sample mean/variance are defined to
be

x̄ =
1

n

∑
i

xi, s2
X =

1

n− 1

∑
i

(xi − x̄)2.

• Given n pairs of random samples, (xi, yi)
n
i=1, the sample covariance is defined to be

sXY =
1

n

∑
i

(xi − x̄)(yi − ȳ).

Assuming neither s2
X nor s2

Y is zero (i.e., neither xi’s nor yi’s are constant), then the
sample correlation is defined to be

r =
sXY√
s2
Xs

2
Y

.
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The Maximum Likelihood Estimator

• MLE: the estimator or estimators1 that maximize the Likelihood function

L(θ; x) = f(x1, . . . , xn; θ) =
n∏
i=1

f(xi; θ).

• How to derive MLE? Write out the log likelihood function

`(θ) = log
[ n∏
i=1

f(xi; θ)
]

=

n∑
i=1

log f(xi; θ).

Find the maximum of `(θ): θ̂ = arg maxθ `(θ)

– Solve `′(θ) = 0 (if no constraints);

– Otherwise, need to check whether the boundary points are the maximum.

• Invariance property of MLE. Let X1, . . . , Xn be a random sample with the pdf f(x; θ).
Let η = g(θ) be a parameter of interest. Suppose θ̂ is the mle of θ. Then g(θ̂) is the
mle of g(θ).

Bias, Variance, and MSE

• An estimator is called unbiased if E(θ̂) = θ.

• For an estimator θ̂ of θ, define the Mean Squared Error of θ̂ by

MSE(θ̂) = E(θ̂ − θ)2 = E[θ̂ − E(θ̂)]2 + Var(θ̂) = Bias2 + Var

Specially, if θ̂ is unbiased, then MSE(θ̂) = Var(θ̂).

If θ is multi-dimensional, then MSE is defined as E‖θ̂−θ‖2 = E|θ̂−E(θ̂)‖2+tr
[
Cov(θ̂)

]
,

where the 2nd term is the trace of the covariance matrix of θ̂.

1MLE may not be unique.
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Hypothesis Testing

• Given data X = (X1, . . . , Xn) ∼ P , we want to test

(null) H0 : P ∈ P0, vs. (alternative) HA : P ∈ PA,

or equivalently if all distributions have parameters,

H0 : θ ∈ Θ0, vs. HA : P ∈ ΘA.

H0 : θ ≥ θ0 vs. Ha : θ < θ0 Left-tailed
H0 : θ ≤ θ0 vs. Ha : θ > θ0 Right-tailed
H0 : θ = θ0 vs. Ha : θ 6= θ0 Two-tailed (or two-sided)

Our decision is usually made based on a test statistic δ(X): if δ(X) is in some region
(aka, the Rejection Region), reject H0, otherwise do not reject.

• Two types of errors

H0 True H0 False

Do NOT Reject H0 ¨̂ Type II Error

Reject H0 Type I Error ¨̂

• The power of a test δ is defined to be the probability of rejection when the true
parameter is θ, namely,

β(θ) = Pθ(δ(X) ∈ Rejection Region).

The significant level of a test (usually denoted by α) is defined to be maxθ∈Θ0 β(θ);
for two-tailed test, the significant level is β(θ0).

We usually fix the level of a test, say 5% test or 1% test, and then decide the Rejection
Region, i.e., the Rejection Region depends on α.

• The p-value (observed level of significance ) is the probability, computed assuming that
H0 is true, of obtaining a value of the test statistic as extreme as, or more extreme
than, the observed value.

Use p-value to perform a level α test: If p-value < α, reject; otherwise, do not reject
H0.

• Connection between CIs and Hypothesis Tests. Suppose (L(X), U(X)) is a 100(1 −
α)% CI for θ. Consider

H0 : θ = θ0, vs HA : θ 6= θ0. (1)

Define a test: reject H0 if θ0 ∈ (L(X), U(X)). Then this is a test with significant level
α, since

Pθ0( Reject H0) = Pθ0
(
(L(X), U(X)) does not cover θ0

)
= α.
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Similarly we can invert tests to obtain CIs. Let δ(X) to denote the test statistic and
RRθ0 denotes the rejection region for level α test with null H0 : θ = θ0. Given data
X, this set

B = {θ0 : δ(X) 6= RRθ0} (2)

is a 100(1− α)% CI2 for θ, since

Pθ(θ ∈ B) = P(Not Reject H0 | H0 is true) = 1− α.

Here is the interpretation of this 95% CI (2): it contains θ values for which the null
would not be rejected given data X.

In most tests we face in Stat425, we are testing H0 : θ = θ0 and Ha : θ 6= θ0, and
we usually have an unbiased estimator of θ, denoted by θ̂, which has standard error
sd(θ̂). The test statistic takes the following form

θ̂ − θ0

sd(θ̂)
∼ Tν , under H0.

So for a level α test,

Reject H0, if

∣∣∣∣∣ θ̂ − θ0

sd(θ̂)

∣∣∣∣∣ > t(α/2)
ν ,

where t
(α/2)
ν is the (1− α/2) quantile of Tν . The (1− α) CI for θ is

θ̂ ± t(α/2)
ν sd(θ̂).

It is easy to check that, given θ̂ (i.e., given a data set), for any θ0 in the (1 − α) CI,
we cannot reject the hypothesis H0 : θ = θ0.

2This set, if not an interval, is the credible region.
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