Stat425 F. Liang

Matrices and Vectors

e Vector scalar multiplication and addition operations:

Uy U1 2u1 + vy

2
2up,1 + 3vpx1 = 2 2 +3 2 = uz + 302
Up, Up, 2uy, + 3vp,

e The inner (dot or cross) product of two vectors is defined to be

u'v =3 wuiv; = ul - ||v] cos(§),

1

where ||u|| denotes the norm of a vector
lul| = Vultu = > w2,
i

and 6 is the angle between the two vectors.
e A unit vector is a vector whose norm is 1.
e When two vectors are orthogonal, cos(f) = 0, therefore u’v = 0, denoted by u L v.

e The Euclidean distance between two vectors u and v is ||[u — v||.

e A set of vectors vi,..., vy, is said to be linear independent, if

avi+--+emvp=0iff ¢ =+ =¢,;, =0.

Otherwise they are linear dependent.

In other words, if a set of vectors are linear independent, then no one can be ex-
pressed as a linear combination of the others; if they are linear dependent, then there
exists at least one vector, say vo, which can be written as a linear combination of
Vi1,V3,...,Vmp.

e If A is a matrix, its transpose is denoted by A”. The trace of a square matrix, denoted
by tr(A), is the sum of its diagonal elements.

e If A is a square matrix, its inverse is another matrix C such that AC = I. We usually
denote the inverse matrix by A~!. Not all square matrices have an inverse. Only full
rank or non-singular square matrices has an inverse, and the corresponding inverse is
unique.

e Suppose we have an n X p matrix X with n > p.

— X, xp is not full rank <= its columns are linear dependent.

— X, xp is full rank <= its columns are linear independent.

If X is full rank, then (X!X) is a p x p full-rank square matrix, so (X!X)~! exists.
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Means and Variances of Random Variables

e Covariance of X and Y
Cov(X,Y) = E[(X — ux)(¥ — py)] = E(XY) - uxy

— Connection with Variance: Cov(X, X) = Var(X);
— Symmetric: Cov(X,Y) = Cov(Y, X);

— Linearity with scale change, but invariant with location change

Cov(aX +b,Y) =aCov(X,Y), Cov(X +Y, W)= Cov(X,W)+ Cov(Y,W).

Cov(aX +bY,cX +dY) = acVar(X)+ bdVar(Y)
+(ad 4 bc)Cov(X,Y)
Var(aX +bY) = a*Var(X) 4 2abCov(X,Y) + b*Var(Y).

— Cauchy-Schwarz Inequality

|Cov(X,Y)| < +/Var(X)Var(Y)

e Correlation Coeflicient
oxXy COV(X N Y)

PXY = ooy Nar(X)Var(Y)

— —1 < pxy <1, due to the CS inequality.

— pxy = =1 if and only if X and Y are linear functions of each other.

— pxy = 0 if and only if Cov(X,Y) = 0, then we say X and Y are uncorrelated.

The magnitude of pxy reflects only the linear dependence between X and Y.
So it is possible that Y = g(X) where g is a one-to-one map (i.e., X totally
determines Y'), but pxy is small.

— If X and Y are independent, then pxy = 0, but the reverse doesn’t hold.
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e Mean and Variance of Sum of Random Variables. Let X1, ..., X, be n random vari-
ables and ag, ay,...,a, be (n+ 1) constants. Define U = ap + a1 X1 + -+ + anXy.

EU = ]E(ao+a1X1 +~-+aan) =ap+ a1 EXy + - +a,EX,

Var(U) = Var(ap+ a1 X1+ -+ a, Xy)

n
= Z a?Var(X;) + Z a;a;Cov(X;, X;)
i=1 i#]

= Z a?Var(X;) + 2 Z a;a;Cov(X;, X;)
i=1 i<j

If X;’s are uncorrelated, i.e., Cov(X;, X;) = 0 for all i # j, then variance of the sum

is equal to the sum of variances.

e Conditional Expectations.

EX[Y =y) = D o P(X =zl =y) =) z-pxy(zly)
BIX|Y =9) = [ fxy(aly)da

What does the symbol E(X|Y) mean? You can view it as a function of Y, i.e.,
E(X]Y) = g(Y) with its value at Y = y given by

9(y) =EX | Y =y).

Therefore E(XY) is a random variable. We can talk about its distribution and com-
pute its mean and variance.

Useful properties of conditional expectations and variances

E[E(X |Y)] = EX (Iterative rule)
Var(X) = E(Var(X|Y))+ Var(E(X|Y)) (Variance decomposition)
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e The mean of a random vector Z,,x1 is an m-by-1 vector with the i-th element equal
to E(ZZ)
EZ;

Pmx1 =E[Z] = | -

EZ,,

e The covariance of Z,,x1 is a symmetric m-by-m matrix with the (i,j)-th element
equal to Cov(Z;, Z;).

Smxm = Cov(Z) = E((Z—p)(Z—p)
Var(Zl) tee COV(Zl, Zm)

Cov(Zm, Z1) - Var(Z,,)

e Affine transformations: W = a, 1 + BpxmZ,

E[W]=a+Bu, Cov(W)=BXB'.
Especially, for W = v1Z1 + - - - v, Zym = V'Z,
m
EW] = vip= Zvi,ui,
i=1

Var(W) = v'Yv= ZviQVar(Zi) + QZviijov(Zi, Zj).
i=1 i<j
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The Univariate Normal Distribution

Z ~N(0,1) is called the standard normal rv. ®(z) denotes its CDF.

O(—2)=1-2(2), z>0.

X ~ N(u,0?), then

X = p+ 0ZN(u,0?). pdf, mgf, mean and variance.

aX + b~ N(ap + b, a*0?). Specially, 1(X — ) ~ N(0,1).
Linear combinations of independent normal rv’s are normal.

Z; iid ~ N(0,1). What’s the distribution of W = Z2 + ... + Z2?

n
My (t) = Ee™ = [ Ee!% = (1 - 20)™/2.
=1

So W ~ Ga(3g, %) = x2.

B2 uy
fw(w) = w2 le"2, w>0
L)
~ o~ 2 : z_ [T
Z ~ N(0,1) and W ~ x; are independent, then T T,, (student ¢-dist with n

degrees of freedom).

. _ Z 9 . . . . .
How to derive the pdf of T’ N Consider the following bivariate transformation

-2 v_w
W/n
Then -
n+l 2\ "2
ot = [ 56600 = f%;(é) (1+5)
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The Bivariate Normal Distribution

(Ylayé) ~ NQ(“” E)a where

uz(m) E:(U% U12>:< U% P0102>
o )’ 012 U% pPo102 U% ’

e 1 and a% are the mean and variance, respectively, of Y7;
® L9 and a% are the mean and variance, respectively, of Y5;
® 019 = poy02 is the covariance of Y] and Y5 with p being the correlation coefficient.
Assume p? < 1, and the joint pdf f(y1,v2) is given by
1

X
201094/ 1 — p?
expd 1 <y1—u1)2_2 (yl—u1>(yz—uz>+<yz—u2)2
p 2(1—[)2) 01 p 01 ()] (%]
I B N o
o0 {5y - )

Note that |X| = 0203(1 — p?) and when p? < 1,

o1 _ 1 [ a% —po109 ] ‘

oto3(1—p?) | —poroa  of

e Marginals: Y; ~ N(u;,02) where i = 1, 2.

e Conditionals:

g
YilYa=y2 ~ N(uﬁpaf;(yruz),(l*p?)ﬁ)

g
VolYVi=y ~ N(u2+p£(y1—m),(1—p2)0§)

e Linear Combinations:

aYi + bYs ~ N(ap + buo, a*of + 2abpoios + b203)

e Uncorrelated = Independent: p = 0 implies Y; and Y5 are independent.

e Note: All the statements above assume that the joint distribution of (Y7, Y3) is normal.
However,

Y7 ~ Norm, Y3 ~ Norm does NOT imply (Y1, Y2) ~ Norm.

So if Y1 and Y5 are marginally normally distributed with correlation 0, we cannot
conclude that Y7 and Y5 are independent.
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The Multivariate Normal Distribution

o Let Z=(Zy,...,%,) where Z;’s are iid ~ N(0,1) rv’s. Then Z follows a multivariate
normal distribution, denoted by N, (0,1,,), with

L 1 1 — 1 1
f(Z):: \/ﬂe z:Wexp{—QZzg}:Wexp{—taz},

M(t) = Blexp{t'2)] = [ Be"% = exp { 116112},
=1

and
E(Z) =0, Cov(Z) =1,.

e We can define a general multivariate normal distribution via affine transformations.
Xp><1 == prl + BanZnX17

then X is multivariate normal with mean p and covariance matrix ¥ = BB?, denoted
by
X ~ Np(p, %),

with 1
Mx(t) = exp {ttp, + 5’&21;}.
From the expression of its mgf above, we know that a multivariate normal distribution
is completely determined by its mean p and covariance matrix .
Why don’t we define X via its pdf?

e Recall the definition of the covariance matrix for a random vector. Any covariance
matrix ¥,, should be symmetric and nonnegative definite, i.e.,

alYa > 0, for any a € R?.

The B matrix in ¥ = BB? can be viewed as the square root of 3, but there are many
such square roots. So it is possible to obtain X; and X from two different transforma-
tions, but they end up having the same distribution (see the example in John’s notes).
Any symmetric nonnegative definite matrix has a spectral decomposition

¥ = I'AT, A = diag(\i)j_;,

where Ay > Ay--- > A\, >0, and I';, %y, is a orthonormal matrix, i.e., ITt =1,.

e If A, > 0, then ¥ is positive definite, so || > 0 and Y1 = TA~'T? exists. Then the
pdf of N,(p, X) is given by

1 1 .
f(x) = WWQXP{—2(X—H) by I(X—M)}-

7
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e Properties of the multivariate normal

— Affine transformations of multivariate normals are still normal:
X ~ Ny (1, 2) = ApsenX + bt ~ Ny (A + b, AL AY).

— Marginals of a normal are still normal.

— Conditionals of a normal are still normal.
X1|Xg ~ Ny, (ul + $19555 (X2 — py), S11 — 21222_21221)

— For multivariate normals, uncorrelated = independent.
Note: All the statements above assume that the joint distribution is normal. For
example,
Xj ~Norm; Xy~ Norm does NOT imply (X;,Xz) ~ Norm.

So if X; and Xy are marginally normally distributed with correlation 0, we cannot
conclude that X; and Xo are independent.
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Distributions Related to Normal
e If Z ~N,(0,1,), then ||Z]]* ~ x2.
If Z ~ N,(0,0%L,), then | Z|*/0? ~ x2.
If X ~ N,(p,%) and 71 exists, then (X — p)!S 1 (X — ) ~ x2

n:

If X ~ N, (0, H) where H is a projection matrix (i.e., H is symmetric and idempotent),
then X*HX ~ x2, with m = trace(H). Examples of H:

O NN =
[« NIETSIE
O O O

1 00
01 0|,
000
e Z ~ N(0,1) and W ~ x?2 are independent, then
Z_ .7, (student t-dist)
—~ student t-dist).
/7W n
Wi ~ x2, Wa ~ x2, and they are independent, then

2

Chi-square and Student ¢-dist have one df (degree of freedom) and F-dist has two dfs.

e Xi,...,X, ~N(u,0%), then X and (X; — X,...,X,, — X) are independent,

2 n

_ o _
XNN(:“’;?)? Z(X’i_X)QNX?lflv

i=1

therefore 7
— U
r=-"HK_.71,,
S/\/n !

where 5% = 3" .(X; — X)?/(n — 1) is the sample variance.
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Some Basic Concepts of Statistical Inference
Suppose we have a rv X that has a pdf/pmf denoted by f(x;6) or p(x;0), where 6 is
called the parameter, e.g., p in Bern(p) and (0, 0?) in N(6, o?).

Previously, we focus on problems where the value of 6 is given, and we calculate various
quantities related to the distribution, e.g., the mean, the variance, and various probabilities.

Now we focus on problems where 6 is unknown and we try to estimate various (unknown)
quantities related to this distribution, after observing a random sample (X1, ..., X,,) from
this distribution.

Some jargons:
e Parameter 6

e Random sample: (Xy,...,X,) iid.

e Statistic T'=T(X1,...,X,): a function of the sample, which is also random.

e Estimator 6 = é(Xl7 ..., Xp,) of 0 is a function of the sample, i.e., a statistic. Given
an observed sample (X7 = z1,...,X,, = x,), the value of é(xl, ..., xy) is called an
estimate of #. So, an estimator is a random variable, while an estimate is a real
number.

e Hypothesis testing: decide between the null hypothesis Hy : 8 > 6y and the alternative
hypothesis H, : 8 < 0y where 0y denotes a fixed value for the parameter 6.

e Prediction

Descriptive Statistics
e Given a set of random samples, (x1,...,z,), its sample mean/variance are defined to

be
1 1 _
mzﬁz:zi, s%znilz(xi—x)?
(2

7

e Given n pairs of random samples, (x;,y;);;, the sample covariance is defined to be

sxv = 5 3w - D)~ 9).

i
Assuming neither sg( nor s% is zero (i.e., neither z;’s nor y;’s are constant), then the

sample correlation is defined to be

10
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The Maximum Likelihood Estimator

e MLE: the estimator or estimators! that maximize the Likelihood function

L(0;%) = f(x1,...,2n;0) = [ ] f(2:;0).
i=1
e How to derive MLE? Write out the log likelihood function

n

10) = 1og | [T f(i:0)] = 3" log f(xi;0).
=1

i=1
Find the maximum of £(6): 6 = arg maxy £(0)

— Solve ¢'(#) = 0 (if no constraints);

— Otherwise, need to check whether the boundary points are the maximum.

e Invariance property of MLE. Let X1,..., X, be a random sample with the pdef(ac; 0).
Let n = g(f) be a parameter of interest. Suppose 6 is the mle of §. Then ¢(0) is the
mle of g(6).

Bias, Variance, and MSE

~

e An estimator is called unbiased if E(f) = 6.

e For an estimator 6 of 0, define the Mean Squared Error of 6 by

MSE(f) = E(6 — 0)? = E[§ — E()]? 4 Var(d) = Bias? + Var

Specially, if 6 is unbiased, then MSE(#) = Var(6).

If 0 is multi-dimensional, then MSE is defined as E||0—0]||2 = E|§—E(6)?+tr [Cov(é)] ,
where the 2nd term is the trace of the covariance matrix of 6.

'MLE may not be unique.

11
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Hypothesis Testing

e Given data X = (Xy,...,X,) ~ P, we want to test
(null) Hy: P € Py, wvs. (alternative) Hy: P € Py,
or equivalently if all distributions have parameters,

Hy: 0€0©y, ws. Hy: PeOy.

Hy:0>0y vs. H,:0<06y Left-tailed
Hy:0<60y vs. H,:0>0y Right-tailed
Hy:0=060y vs. H,:0+#60y Two-tailed (or two-sided)

Our decision is usually made based on a test statistic §(X): if §(X) is in some region
(aka, the Rejection Region), reject Hy, otherwise do not reject.

e Two types of errors

Hy True Hj False
Do NOT Reject Hy \'-'/ Type II Error
Reject Hy Type I Error Z

e The power of a test ¢ is defined to be the probability of rejection when the true
parameter is 6, namely,

B(0) = Py(6(X) € Rejection Region).

The significant level of a test (usually denoted by «) is defined to be maxgpee, 5(6);
for two-tailed test, the significant level is 3(6p).

We usually fix the level of a test, say 5% test or 1% test, and then decide the Rejection
Region, i.e., the Rejection Region depends on «.

e The p-value (observed level of significance ) is the probability, computed assuming that
Hy is true, of obtaining a value of the test statistic as extreme as, or more extreme
than, the observed value.

Use p-value to perform a level « test: If p-value < «, reject; otherwise, do not reject
Hy.

e Connection between Cls and Hypothesis Tests. Suppose (L(X),U (X)) is a 100(1 —
a)% CI for 6. Consider

H[)ZQZ@(), vs HA:G#H(). (1)

Define a test: reject Hy if 6y € (L(X),U(X)). Then this is a test with significant level
a, since

Py, ( Reject Ho) = Py, ((L(X),U(X)) does not cover ) = .

12
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Similarly we can invert tests to obtain Cls. Let §(X) to denote the test statistic and
RRg, denotes the rejection region for level a test with null Hy : 6 = 6p. Given data
X, this set

B = {0y : 6(X) # RRg, } (2)

is a 100(1 — a)% CI? for 6, since
Py(0 € B) = P(Not Reject Hy | Hyp is true) =1 — a.

Here is the interpretation of this 95% CI (2): it contains 6 values for which the null
would not be rejected given data X.

In most tests we face in Stat425, we are testing Hg : 8 = 6y and H, : 6 # 6, and
we usually have an unbiased estimator of 6, denoted by 6, which has standard error

~

sd(0). The test statistic takes the following form

b- AHO ~ T,, under Hy.
sd(0)
So for a level « test,
) — 0
Reject Hy, if MU t(ya/Q),
sd(0)

where ¢/ is the (1 — a/2) quantile of T,,. The (1 — «) CI for 0 is
0 + /2 sd(h).

It is easy to check that, given 0 (i.e., given a data set), for any 6y in the (1 — «) CI,
we cannot reject the hypothesis Hy : 6 = 6.

2This set, if not an interval, is the credible region.
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