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Linear SVM for Separable Data
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Kernel Machine

Nonlinear SVM for Separable/Non-separable Data

Linear SVM for Non-separable/Separable Data

Formulate the Primal Problem ( )

Solve the Dual Problem ( )
KKT Conditions link the two sets of solutions

SV: data points on the dashed lines or on the
wrong side of the datelines
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3 Some Practical Issues| 1- Binary decision to probability
-’ 2. Multiclass SVM



Some Practical Issues

1. From binary decision to probability

Run a logistic regression wrt f(x_i).

f(x) =08 -x+ B




Some Practical Issues

Consider MNIST Data
e One-vs-all Fit 10 SVMs
e One-vs-one Fit45 SVMs

Can we formulate the concept of margin
as some kind of area/volume of the ball
(or some kind of convex region) that
separate the K classes? Not a fan of this
idea.

2. Multi-Class SVM

Vanilla extension to multiclass
e One-vs-all
e One-vs-one

Recall how logistic
regression and QDA/LDA/
NB handle multi-class?

Formulate a multi-class SVM

fr(x) = By, - x + Bro
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Linear SVM

Primal

. L. 2
min — -+ i
/8750761:77, QHBH /yzg

subj to y;(x; - B+ Bo) > 1 =&,
& =0

Dual

1
Z Ai — 5 Z AiNjyiys (Xi - X;)
o Note that we do not need to compute beta’s. In
subj to Z Ny =0, v> X >0 practice, we just need to solve for lambda_i’s from the

Dual, and then use lambda_i’s to make predictions.

Prediction

A

sign( Z Aiyi(Xi - X«) + Bo)
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Linear SVM

Primal

1
min §H5H2 +7) &
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Dual

Prediction
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Nonlinear SVM

Nonlinear Feature Mapping

x = P(x) =

2

2
L1, L2y, L1L2,y L1, xQ)

(P1(x), P2(x), - .

)

Kernel Trick: We do not even need to construct the

(@(x), ®(2))

mapping. All we need is

Prediction

Ke(x,z) =

Imax )\ — = Z)\ )\]yzy]

>\1n

subj to Z)‘iyi =0, vy>A\; >0

sign( Y Ay K
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The Kernel Function K

The bivariate function K is often referred to as ; How to Choose the K function?
the reproducing kernel (r.k.) function. We can ,’ |
view K(X, z) as a similarity measure between x | 1. Construct the feature mapping then we

. . , have the K function
and z, which generalizes the ordinary

Euclidean inner product between x and z.

e d-th degree polynomial
K(x,z) = (1+x-2)°
* Gaussian kernel
K(x,2) = exp(—o|x — z[*)

Kernel Trick: We only need the feature space to
exist, as well as the K function.



The bivariate function K is often referred to as

How to Choose the K function?

The Kernel Function K

the reproducing kernel (r.k.) function. We can
view K(X, z) as a similarity measure between x
and z, which generalizes the ordinary
Euclidean inner product between x and z.

e d-th degree polynomial
K(x,z) = (1+x-2)°
* Gaussian kernel
K(x,2) = exp(—o|x — z[*)

Kernel Trick: We only need the feature space to

exist, as well as the K function.

1. Construct the feature mapping then we
have the K function

2. Can we use any symmetric bivariate function
as K? K must satisfy the :
symmetric, semi-positive definite function

K(z,2) = exp(—oz?) exp(—o02?) exp(20x2)

-~ ok .k ok
_ 2 2
= exp(—ox”)exp(—oz )Z x

k=0




The bivariate function K is often referred to as

How to Choose the K function?

The Kernel Function K

the reproducing kernel (r.k.) function. We can
view K(X, z) as a similarity measure between x
and z, which generalizes the ordinary
Euclidean inner product between x and z.

e d-th degree polynomial
K(x,z) = (1+x-2)°
* Gaussian kernel
K(x,2) = exp(—o|x — z[*)

Kernel Trick: We only need the feature space to

exist, as well as the K function.

1. Construct the feature mapping then we
have the K function

2. Can we use any symmetric bivariate function
as K? K must satisfy the '

symmetric, semi-positive definite function

K(z,2) = exp(—oz?) exp(—o02?) exp(20x2)

o

2k k. k
= exp(—oz?)exp(—oz”) Z :]i'z

k=0

3. Who cares. Use any symmetric function that
can capture the similarity between x and z for
your application/task (check our discussion on
distance for KNN)



Convex Optimization

Primal
min B2+~ 3¢
B.BorErm 2 Z
subj to y;(x; - B+ Bo) > 1 —&;,
£ >0

Dual

1
Iilf.lx Z A — 5 Z )\i)\jyz'yj (Xz‘ ‘ Xj)
o ©,]

subj to Z)‘iyi:()’ vy > A >0

Prediction

A

sign ( Z Aiyi(Xi - Xx) + Bo)
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Loss + Penalty

Primal

n

min [1 — yzf(Xz)Lr T VH16H2

1=1




The Kernel Machine

Kernel Model f(x) = a1 K(x1,x) 4+ - + o, K (X, X) + ag

Matrix Representation

f(x1) K(x1,x1) K(x1,x%2)

f(x2) _ | K(x2,x1) K(x2,x%2)

o |\ Kx) K x)
= Ka + o

Parameter Estimation via Regularization

min E yz, —|— vo'Ka
L0



The Kernel Machine For this formulation, given a

Kernel Model f(x) =1 K(x1,x) + -

Matrix Representation

f(x1) K(x1,x1) K(x1,x%2)

f(x2) _ | K(x2,x1) K(x2,x%2)

o |\ Kx) K x)
= Ka + o

Parameter Estimation via Regularization

t
glg; Z yz, ) +rva' Ko

similarity function K(x, z) that
doesn’t need to satisfy the

+ an K (%0, X) + ao Mercer’s condition, we just

assume our model like this,

\_/ and then estimate coefficients

alpha’s with a (generalized)
ridge penalty.

K(Xl,Xn) a1
K(x2,%n) " + ay
5% 25 ) Oé.n

For SVM, we have
Hinge-Loss + Ridge-Penalty.
For SVM, the sparsity is from Hinge-Loss



The Kernel Machine

Kernel Model f(x) =1 K(x1,x) + -

Matrix Representation

f(x1) K(x1,x1) K(x1,x%2)

f(x2) _ | K(x2,x1) K(x2,x%2)

o |\ Kx) K x)
= Ka + o

Parameter Estimation via Regularization

min E yz,
L0

) +rva'Ka

+ an K (X5, X) + Qg

For this formulation, given a
similarity function K(x, z) that
doesn’t need to satisfy the
Mercer’s condition, we just
assume our model like this,
X____— and then estimate coefficients
alpha’s with a (generalized)
ridge penalty.

K(Xl,Xn) a1
K(x2,%n) " + ay
5% 25 ) Oé.n

If K satisfies the Mercer’s condition, what
more we can say about this framework?

For SVM, we have
Hinge-Loss + Ridge-Penalty.
For SVM, the sparsity is from Hinge-Loss



Reproducing Kernel Hilbert Space (RKHS)

Representer Theorem

. — 1
argming ey, D~ Ly f(x) + v &

=1
— CVll((>(17><) + o anK(X’ruX) -+ 870
Proof : Let H; = span{K(-,z1),...,K(-,2,)} and Hy = H;. Then

for any function f € Hy, we can write

=5+ f2, where f; € Hy and fo € Ho.

—

f(.’L' ) — <f y 9z >H K Then we have the following
i(z) — <f7 QZ>'HK/ L LfI1F > (1Al
ReprOdUCing PrOperty 2. f(x;) = fi(x;) for i = 1,...,n, because

<f7K('7'/I’.'L')>H . <f1 + .vaK(°7:I’.i)>H1\, — <.f17K(°a:I;i)>H1\..'

K

That is Q(f) > Q(f1). So to minimize (f), it suffices to focus on subspace
H1. (Does the proof sound familiar? Yes, it follows the same argument as

the one in the proof for smoothing splines.)



Summary: SVMs

Primal . Primal
5 n %HﬂHQ +y Y & min 2 1—yif(xi)], +v|IB
e e F(x) = B -x + i
Dual 1. Formulate the Primal Problem ( )
If\lff Z Ai — % Z Aijyiy; (Xi - X;) 523 i?(l\{'eégicﬂ;:ngrﬁr?lietrr?e(two se.té of solutions
%,J 4. SV: data points on the dashed lines or on the

subj to Z Nsi = 0, 7> \; >0 wrong side of the datelines
Popular kernel functions

Prediction * d-th degree polynomial
A d
Sign( Z )\zyz(xz : X*) + 60) K(X, Z) — (]. + X - Z)
i€ N,  (Gaussian kernel

K (x,z) = exp(—o|x — z[|*)



Summary: The Kernel Machine
Here K(X, z) is any symmetric
function reflecting the similarity
Kernel Model f(x) =01 K(x1,x) + - + anK(x,,X) + ag between x and z, which
doesn’t need to satisfy the

_ _ Mercer’s condition.
Matrix Representation

f(Xl) K(Xl,Xl) K(X17X2) K(Xlaxn) a1
fx2) || K(xo,x1) K(x2,%2) -+ K(x2,%n) =
. - 5 L e e . T Qo
f(Xn) Koy o) Ao i KD ) Oé.n
= Ko + o
Parameter Estimation via Regularization Here we can employ any loss

function for regression/
t classification, and any penalty
min Z yz, + rvo Ka function on alpha.
L0

___—



