Compare Linear Classifiers

Logistic Regression Linear SVM

LDA

Directly estimate log of the
following ratio by a linear
function, without any
assumptions on P(x)

Estimate mu1, mu0, Sigma
then we have P(y) and P(x | y).

arg min & [1 Y (X))
For binary classification, | !
decision boundary is — sign (H(I) _ 5)

determined by P(Y=11x)/P(Y=01x) > 1.

So if data are generated from a
mixture of two normals following
the assumption of LDA, then
LDA and Logistic should return
the same linear function, of
course, asymptotically.
Estimates from finites samples
may differ.

P(Y=1 1 x)/P(Y=01x) > 1,

which corresponds to the
following linear function

x'S 7y — py) + ap




Compare Linear Classifiers

1—al-n(z)+ |1+a|-(1-nx))

1—a-(1-2n(x))

Linear SVM

arg min & [1 Y (X))
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Imbalanced/Unbalanced Data

1.

If mis-classification rate is the goal, then go
with that one-class classification rule.

If the two errors, classifying Y=1 to be O or
classifying Y=0 to be 1, have different
consequences, then use asymmetric
classification error, which will lead to a
prob cut-off value different from the usual
0.5.

Use other loss functions (for evaluation) that
fit the underlying application. For example, if
ranking is of interest, use AUC.

Down-sampling or up-sampling or re-
weighting. Don’t forget to calibrate your
model at the end.

1. Platt’s scaling

2. lsotonic Regression

Data: many Y=0, very few Y=1

Problem: cannot beat the rule that
predicts everything to be class O



Infinitely Imbalanced Logistic Regression
(by Art Owen, see paper link on Piazza)

Suppose data are Fit a logistic regression model on this data, then

y=1,x_{li},i=1,...,n_1 consider an extreme situation, N —> infinity. Do the

y=0,x_{0i},i=1,....,N logistic coefficients have a meaningful limit?
Suppose

) The intercept —> (-infinity)
z = %Zmli cR?Y & xz~F; when Y =0 The slope beta converges to the following,
1=1

under some mild conditions on FO
Let a(/N) and 3(V) be logistic regression estimates

We have To understand the exponential tilt,
assume LDA assumption holds.
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3 is the exponential tilt to take Eg,(X) onto Z
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head(Cheart)
sbp tobacco 1dl adiposity

famhist typea obesity alcohol age chd

1 160 12.00 5.73 23.11 Present 49 25.36 97.20 52 1
2 144 0.01 4.41 28.61 Absent 55 28.87 2.6 63 1
3 118 0.08 3.48 32.28 Present 52 29.14 3.81 46 0@
4 170 7.50 6.41 38.03 Present 51 31.99 24.26 58 1
5 134 13.600 3.50 27.78 Present 6@ 25.99 57.34 49 1
6 132 6.20 6.47 36.21 Present 62 30.77 14.14 45 @
> heart$famhist = as.numericCheart$famhist)
> heartfull = glm(chd ~., data=heart, family=binomial)
> tableCheart$chd)

0 1
302 160
>
> 1d = which(heart$chd ==1)
> one.sample = apply(data.matrixCheart[id, ]), 2, mean)
> one.sample[1@] = 1
> round(one.sample, dig=4)

sbp tobacco ldl adiposity famhist typea obesity
143.7375 5.5249 5.4879 28.1202 1.6000 54.4937 26.6229
age chd

50.2938 1.0000
> newheart = rbindCheart[-1d, ], one.sample)
> table(newheart$chd)

0 1

302 1

> newfit = glm(chd ~., data=newheart, family=binomial)
> round(cbind(coef(heartfull), coef(newfit)), dig=4)

(Intercept)
sbp

tobacco

1dl
adiposity
famhist
typea
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alcohol
19.1453
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9254

0396
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[,2]
7297

.0119
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.0001
.0428



