Reproducing Kernel Hilbert Space (RKHS)

A reproducing Kernel Hilbert space \mathcal{H}_K is a collection of functions f(x) defined on domain \mathcal{X} and equipped with an inner product $\langle f, g \rangle_{\mathcal{H}_K}$. (The meaning of K in the subscript will be explained soon.) What's special about RKHS is that for each x in the domain \mathcal{X} , there exists a function in \mathcal{H}_K , denoted by g_x , such that for any function in this RKHS, its value at x can be obtained by doing an inner product with g_x , known as the *reproducing property*.

Define the following bivariate function $K(\cdot, \cdot)$ on $\mathcal{X} \times \mathcal{X}$:

$$K(x,z) = \langle g_x, g_z \rangle_{\mathcal{H}_K}$$

It is easy to show that K(x, z) is symmetric and psd (positive semidefinite) using the property of inner products.

$$K(x,z) = \langle g_x, g_z \rangle_{\mathcal{H}_K} = \langle g_z, g_x \rangle_{\mathcal{H}_K}$$

= $K(z,x)$; inner product is symmetric

$$\sum_{i,j} \alpha_i \alpha_j K(x_i, x_j) = \sum_{i,j} \alpha_i \alpha_j \langle g_{x_i}, g_{x_j} \rangle_{\mathcal{H}_K} = \left\langle \sum_i \alpha_i g_{x_i}, \sum_j \alpha_j g_{x_j} \right\rangle_{\mathcal{H}_K}$$
$$= \left\| \sum_i \alpha_i g_{x_i} \right\|^2 \ge 0.$$

A Simple Example of RKHS

Does such a function space exist? Let's look at a simple example of RKHS, which contains all linear functions (without intercept) on $\mathcal{X} = \mathbb{R}^2$:

$$\mathcal{H}_K = \left\{ f_\beta(x) = \beta^t x = \beta_1 x_1 + \beta_2 x_2, \beta \in \mathbf{R}^2 \right\}$$

with the inner product between two linear functions, f_{β} and f_{θ} , being the ordinary dot product between their slope coefficient vectors, namely,

$$\langle f_{\beta}, f_{\theta} \rangle_{\mathcal{H}_K} = \beta \cdot \theta = \beta^t \theta.$$

• The reproducing property: for any $z \in \mathbf{R}^2$,

$$f_{\beta}(z) = \beta^t z = \langle f_{\beta}, f_z \rangle,$$

where f_z is a linear function with slope vector $(z_1, z_2)^t$. For example, for any $f_\beta \in \mathcal{H}_K$, its value at $z = (2, 3)^t$ is equal to

$$f_{\beta}(2,3) = \beta_1(2) + \beta_2(3) = \langle f_{\beta}, g \rangle,$$

where $g(x) = 2x_1 + 3x_2$.

• The kernel function

$$K(x,z) = \langle f_x, f_z \rangle = x^t z$$

is the dot product in \mathbf{R}^2 . Note that if we fix one argument of K, then $K(\cdot, z)$ is an element in \mathcal{H}_K and it's basically the evaluation function $f_z: \langle f_\beta, K(\cdot, z) \rangle = f_\beta(z).$

The Kernel Function

It turns out that a symmetric and psd bivariate kernel function $K(\cdot, \cdot)$ uniquely determines an RKHS. This is why when we talk about an RKHS, we do not need to explain what that space looks like; we just need to give the expression of the K function.

Given an RKSH, we can define a kernel function $K(\cdot, \cdot)$ that is symmetric and psd. Next we show that given a symmetric and psd bivariate function $K(\cdot, \cdot)$, we can construct an RKHS. The construction involves the following steps:

 Note that if we fix one argument of K, then K(·, z) is a function defined on X. Construct a function space H that contains all such functions K(·, z), their linear combinations, and their limits:

$$\mathcal{H} = \operatorname{span}\{K(\cdot, z), z \in \mathcal{X}\}.$$

• Next define an inner product between two elements in \mathcal{H} to make \mathcal{H} a Hilbert space. First, define

$$\langle K(\cdot, z), K(\cdot, x) \rangle_{\mathcal{H}} \triangleq K(x, z).$$

Then for $f(x) = \sum_{k} a_k K(\cdot, z_k)$ and $g(x) = \sum_j b_j K(\cdot, x_j)$, define $\langle f, g \rangle_{\mathcal{H}} = \sum_k \sum_j a_k b_j K(x_j, z_k).$ (1)

Since K is symmetric and psd, the inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is well-defined. Further, it is easy to check that $K(\cdot, z)$ plays the same role as the g_z function, i.e., for any $f \in \mathcal{H}$, its value at z can be reproduced by computing its inner product with $K(\cdot, z)$:

$$f(z) = \langle f, K(\cdot, z) \rangle_{\mathcal{H}}.$$

• Note that we haven't checked whether $\{K(\cdot, z), z \in \mathcal{X}\}$ form a basis for \mathcal{H} ; actually they do NOT. So the linear representation for f and the one for g are not unique. For example, we could write the same f function as $f(x) = \sum_l c_l K(\cdot, u_l)$. So we need to show that the inner product defined at (1) stays the same if we plug in a different representation of f or g. Further, we need to show that the inner product (1) is well-defined when f or g are limits of linear combinations of $K(\cdot, z)$'s.

I skip the proof here. For details, you can google lecture notes or review papers on RKHS, or check this book "Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond" by Schlkopf and Smola.

Representer Theorem

Consider the following function estimation problem: given a set of training data $(x_i, y_i)_{i=1}^n$, find a function from an RKHS \mathcal{H}_K that minimizes the following "loss + penalty" objective function:

$$\Omega(f) = \sum_{i=1}^{n} L(y_i, f(x_i)) + \lambda \|f\|_{\mathcal{H}_K}^2.$$
 (2)

The first term denotes the empirical loss on the *n* sample points (y_i could be continuous as in regression and categorical as in classification), the second term is generally interpreted as a roughness penalty, where the roughness is measured by the squared norm $||f||^2_{\mathcal{H}_{\mathcal{K}}}$, and λ is a tuning parameter.

The RKHS could be an infinite dimensional function space. A beautiful result, known as the *Representer Theorem* (Kimeldorf and Wahba, 1971), shows that the minimizer of (2) is always finite dimensional (with maximal dim = n) and takes the following form

$$\operatorname{argmin}_{f \in \mathcal{H}_K} \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \lambda \|f\|_{\mathcal{H}_K}^2$$
$$= w_1 K(x, x_1) + \dots + w_n K(x, x_n).$$

Proof: Let $\mathcal{H}_1 = \operatorname{span}\{K(\cdot, x_1), \ldots, K(\cdot, x_n)\}$ and $\mathcal{H}_2 = \mathcal{H}_1^{\perp}$. Then for any function $f \in \mathcal{H}_K$, we can write

$$f = f_1 + f_2$$
, where $f_1 \in \mathcal{H}_1$ and $f_2 \in \mathcal{H}_2$.

Then we have the following

- 1. $||f||^2 \ge ||f_1||^2;$
- 2. $f(x_i) = f_1(x_i)$ for i = 1, ..., n, because

$$\langle f, K(\cdot, x_i) \rangle_{\mathcal{H}_K} = \langle f_1 + f_2, K(\cdot, x_i) \rangle_{\mathcal{H}_K} = \langle f_1, K(\cdot, x_i) \rangle_{\mathcal{H}_K}.$$

That is $\Omega(f) \ge \Omega(f_1)$. So to minimize $\Omega(f)$, it suffices to focus on subspace \mathcal{H}_1 . (Does the proof sound familiar? Yes, it follows the same argument as the one in the proof for smoothing splines.)