Statb42: Statistical Learning F. Liang

Reproducing Kernel Hilbert Space (RKHS)

A reproducing Kernel Hilbert space Hy is a collection of functions f(x)
defined on domain X and equipped with an inner product (f,g)s,. (The
meaning of K in the subscript will be explained soon.) What’s special about
RKHS is that for each z in the domain X, there exists a function in H,
denoted by g, such that for any function in this RKHS, its value at x can
be obtained by doing an inner product with g,, known as the reproducing

property.

‘RKHS: Reproducing Kernel Hilbert Space

Hx

Define the following bivariate function K(-,-) on X x X

K(:L‘, Z) = <g:ra gz>7'lK'

It is easy to show that K (z,z) is symmetric and psd (positive semidefinite)

using the property of inner products.

K(m,z) = <g:cagz>HK = <gzvgw>HK

= K(z,z); inner product is symmetric
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A Simple Example of RKHS

Does such a function space exist? Let’s look at a simple example of RKHS,

which contains all linear functions (without intercept) on X = R?:

Hi = {fs(x) = 'z = Biz1 + Poms, B € R}

with the inner product between two linear functions, fg and fy, being the

ordinary dot product between their slope coefficient vectors, namely,

(fa fo)my = B -0 = 5'0.
e The reproducing property: for any z € R?,

fa(2) = B'z = (fs, ),

where f, is a linear function with slope vector (21, 22)t. For example,

for any f3 € H, its value at z = (2,3)" is equal to

f3(2,3) = B1(2) + B2(3) = (f3,9),
where g(x) = 2x1 + 3.

e The kernel function
K(z,2) = (fo, f2) = xtz

is the dot product in R?. Note that if we fix one argument of K, then

K(-,z) is an element in Hx and it’s basically the evaluation function

Jz <f5,K(',Z)> = fﬁ(z)

The Kernel Function

It turns out that a symmetric and psd bivariate kernel function K(-,-)
uniquely determines an RKHS. This is why when we talk about an RKHS,
we do not need to explain what that space looks like; we just need to give

the expression of the K function.
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Given an RKSH, we can define a kernel function K (-, -) that is symmetric

and psd. Next we show that given a symmetric and psd bivariate function

K(-,-), we can construct an RKHS. The construction involves the following

steps:

Note that if we fix one argument of K, then K (-, z) is a function defined
on X. Construct a function space H that contains all such functions

K (-, z), their linear combinations, and their limits:

H = span{K (-, z),z € X'}.

Next define an inner product between two elements in H to make H

a Hilbert space. First, define
(K(2), K(a))n 2 K(x,2).
Then for f(z) =) apK(-, 2) and g(x) = >, b; K (-, z;), define
(foa)m = arbK(xj, ). (1)
E o J
Since K is symmetric and psd, the inner product (-, -)3 is well-defined.

Further, it is easy to check that K (-, z) plays the same role as the g,

function, i.e., for any f € H, its value at z can be reproduced by

computing its inner product with K(-, 2):

f(2) =, K(,2)n
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e Note that we haven’t checked whether {K(-,z),z € X'} form a basis

for H; actually they do NOT. So the linear representation for f and
the one for g are not unique. For example, we could write the same
f function as f(xz) = > ;¢ K(-,4;). So we need to show that the
inner product defined at (1) stays the same if we plug in a different
representation of f or g. Further, we need to show that the inner
product (1) is well-defined when f or g are limits of linear combinations
of K(-,2)’s.
I skip the proof here. For details, you can google lecture notes or
review papers on RKHS, or check this book “Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and Beyond”
by Schlkopf and Smola.

Representer Theorem

Consider the following function estimation problem: given a set of train-
ing data (x;,y;),, find a function from an RKHS Hf that minimizes the

following “loss + penalty” objective function:

Q) =D Llyi F(@) + A f I3 (2)

The first term denotes the empirical loss on the n sample points (y; could be
continuous as in regression and categorical as in classification), the second
term is generally interpreted as a roughness penalty, where the roughness is

measured by the squared norm || fH%{K, and A is a tuning parameter.

The RKHS could be an infinite dimensional function space. A beautiful
result, known as the Representer Theorem (Kimeldorf and Wahba, 1971),
shows that the minimizer of (2) is always finite dimensional (with maximal

dim = n) and takes the following form

. 1 Z"
argmlnfGHKg L(yi, f(zi)) + )\HfH%-[K
i=1

w K(x,z1) + - + w, K (z,x,).
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Proof : Let H; = span{K(-,x1),...,K(-,z,)} and Ha = Hi. Then

for any function f € Hy, we can write
f=fi+fo where f1 € Hi and fo € Ho.

Then we have the following

LA = (A%

2. f(zi) = fi(x;) for i = 1,...,n, because
<f7K('>$i)>rHK = <f1 + f27K('7xi)>fHK = <f17K('7;U’i)>rHK-

That is Q(f) > Q(f1). So to minimize Q(f), it suffices to focus on subspace
Hi. (Does the proof sound familiar? Yes, it follows the same argument as

the one in the proof for smoothing splines.)



