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Reproducing Kernel Hilbert Space (RKHS)

A reproducing Kernel Hilbert space HK is a collection of functions f(x)

defined on domain X and equipped with an inner product 〈f, g〉HK
. (The

meaning of K in the subscript will be explained soon.) What’s special about

RKHS is that for each x in the domain X , there exists a function in HK ,

denoted by gx, such that for any function in this RKHS, its value at x can

be obtained by doing an inner product with gx, known as the reproducing

property.
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RKHS: Reproducing Kernel Hilbert Space 

Define the following bivariate function K(·, ·) on X × X :

K(x, z) = 〈gx, gz〉HK
.

It is easy to show that K(x, z) is symmetric and psd (positive semidefinite)

using the property of inner products.

K(x, z) = 〈gx, gz〉HK
= 〈gz, gx〉HK

= K(z, x); inner product is symmetric∑
i,j

αiαjK(xi, xj) =
∑
i,j

αiαj〈gxi , gxj 〉HK
=
〈∑

i

αigxi ,
∑
j

αjgxj

〉
HK

=
∥∥∥∑

i

αigxi

∥∥∥2 ≥ 0.
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A Simple Example of RKHS

Does such a function space exist? Let’s look at a simple example of RKHS,

which contains all linear functions (without intercept) on X = R2:

HK =
{
fβ(x) = βtx = β1x1 + β2x2, β ∈ R2

}
with the inner product between two linear functions, fβ and fθ, being the

ordinary dot product between their slope coefficient vectors, namely,

〈fβ, fθ〉HK
= β · θ = βtθ.

• The reproducing property: for any z ∈ R2,

fβ(z) = βtz = 〈fβ, fz〉,

where fz is a linear function with slope vector (z1, z2)
t. For example,

for any fβ ∈ HK , its value at z = (2, 3)t is equal to

fβ(2, 3) = β1(2) + β2(3) = 〈fβ, g〉,

where g(x) = 2x1 + 3x2.

• The kernel function

K(x, z) = 〈fx, fz〉 = xtz

is the dot product in R2. Note that if we fix one argument of K, then

K(·, z) is an element in HK and it’s basically the evaluation function

fz: 〈fβ,K(·, z)〉 = fβ(z).

The Kernel Function

It turns out that a symmetric and psd bivariate kernel function K(·, ·)
uniquely determines an RKHS. This is why when we talk about an RKHS,

we do not need to explain what that space looks like; we just need to give

the expression of the K function.
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Given an RKSH, we can define a kernel function K(·, ·) that is symmetric

and psd. Next we show that given a symmetric and psd bivariate function

K(·, ·), we can construct an RKHS. The construction involves the following

steps:

• Note that if we fix one argument ofK, thenK(·, z) is a function defined

on X . Construct a function space H that contains all such functions

K(·, z), their linear combinations, and their limits:

H = span{K(·, z), z ∈ X}.

• Next define an inner product between two elements in H to make H
a Hilbert space. First, define

〈K(·, z),K(·, x)〉H , K(x, z).

Then for f(x) =
∑

k akK(·, zk) and g(x) =
∑

j bjK(·, xj), define

〈f, g〉H =
∑
k

∑
j

akbjK(xj , zk). (1)

Since K is symmetric and psd, the inner product 〈·, ·〉H is well-defined.

Further, it is easy to check that K(·, z) plays the same role as the gz

function, i.e., for any f ∈ H, its value at z can be reproduced by

computing its inner product with K(·, z):

f(z) = 〈f,K(·, z)〉H.
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• Note that we haven’t checked whether {K(·, z), z ∈ X} form a basis

for H; actually they do NOT. So the linear representation for f and

the one for g are not unique. For example, we could write the same

f function as f(x) =
∑

l clK(·, ul). So we need to show that the

inner product defined at (1) stays the same if we plug in a different

representation of f or g. Further, we need to show that the inner

product (1) is well-defined when f or g are limits of linear combinations

of K(·, z)’s.

I skip the proof here. For details, you can google lecture notes or

review papers on RKHS, or check this book “Learning with Kernels:

Support Vector Machines, Regularization, Optimization, and Beyond”

by Schlkopf and Smola.

Representer Theorem

Consider the following function estimation problem: given a set of train-

ing data (xi, yi)
n
i=1, find a function from an RKHS HK that minimizes the

following “loss + penalty” objective function:

Ω(f) =

n∑
i=1

L(yi, f(xi)) + λ‖f‖2HK
. (2)

The first term denotes the empirical loss on the n sample points (yi could be

continuous as in regression and categorical as in classification), the second

term is generally interpreted as a roughness penalty, where the roughness is

measured by the squared norm ‖f‖2HK
, and λ is a tuning parameter.

The RKHS could be an infinite dimensional function space. A beautiful

result, known as the Representer Theorem (Kimeldorf and Wahba, 1971),

shows that the minimizer of (2) is always finite dimensional (with maximal

dim = n) and takes the following form

argminf∈HK

1

n

n∑
i=1

L(yi, f(xi)) + λ‖f‖2HK

= w1K(x, x1) + · · ·+ wnK(x, xn).
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Proof : Let H1 = span{K(·, x1), . . . ,K(·, xn)} and H2 = H⊥
1 . Then

for any function f ∈ HK , we can write

f = f1 + f2, where f1 ∈ H1 and f2 ∈ H2.

Then we have the following

1. ‖f‖2 ≥ ‖f1‖2;

2. f(xi) = f1(xi) for i = 1, . . . , n, because〈
f,K(·, xi)

〉
HK

=
〈
f1 + f2,K(·, xi)

〉
HK

=
〈
f1,K(·, xi)

〉
HK

.

That is Ω(f) ≥ Ω(f1). So to minimize Ω(f), it suffices to focus on subspace

H1. (Does the proof sound familiar? Yes, it follows the same argument as

the one in the proof for smoothing splines.)
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