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Constrained Optimization

Consider the following optimization problem:

min f(z), subj to c(z) ≥ 0. (1)

Assume both f and c are differentiable. A point z is called a feasible point

for (1), if it satisfies the constraint, i.e., c(z) ≥ 0. We need to differentiate

two types of feasible points: c(z) > 0 and c(z) = 0.

• If c(z) > 0, then we say that the inequality constraint is inactive.

Due to the continuity of c(z), there exists a small neighborhood (e.g.,

a circle) around z and all points in that neighborhood are feasible

points. That is, z is an interior point of the feasible region.

• If c(z) = 0, then we say that the inequality constraint is active. That

is, z is on the boundary of the feasible region.

Recall that −∇zf(z) represents a direction that can decrease the value

of f . Suppose z∗ is a local minimizer (or one of the local minimizers) of (1).

• If c(z∗) > 0, then −∇zf(z∗) = 0, i.e., at z∗ there is no direction that

can decrease the value of f .

• If c(z∗) = 0, then −∇zf(z∗) = −λ∇zc(z∗) where λ ≥ 0 is any non-

negative number, i.e., the only direction that can decrease the value of

f is a forbidden direction since it’s parallel to the direction that would

decrease the value of c(·). Since z∗ is at the boundary of c(z) ≥ 0,

moving toward a direction that decreases c(·) would leave the feasible

region.

We can summarize the above conditions for a local minimizer z∗ as

∇zf(z∗) = λ∇zc(z∗), (2)

c(z∗) ≥ 0, λ ≥ 0, and λc(z∗) = 0. (3)

Equation (2) can be replaced by ∇zL(z, λ) = 0, where

L(z, λ) = f(z)− λc(z)
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is the Lagrangian associated with problem (1), and λ is the Lagrange mul-

tiplier. The last equality in (3) is the Complementarity Condition: λ and

c(z∗) cannot be non-zero simultaneously.

Consider a more general constrained optimization problem where we

have multiple inequality constraints:

min f(z)

subj to ci(z) ≥ 0, i ∈ I,

Then the KKT Conditions, the first order necessary conditions for a local

minimizer z∗, are

∇zf(z∗) =
∑
i

λici(z
∗),

ci(z
∗) ≥ 0, ∀i

λi ≥ 0, ∀i

λici(z
∗) = 0, ∀i.

The first equation (above) can be replaced by ∇zL(z, λ) = 0, where

L(z, λ) = f(z)−
∑
i

λici(z)

is the Lagrangian and λi’s are the Lagrange multipliers. The Complemen-

tarity Condition implies that λi and ci(z
∗) can’t be non-zero simultaneously.

Convex Programming Problem

When f(z) is convex and ci(z) is concave, then

min
z

f(z) (4)

subj to ci(z) ≥ 0, i ∈ I,

is a convex programming problem (minimizing a convex function on a con-

vex set).

Some facts about convex programming problems:
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• Every local solution z∗ is a global solution and the set of global solu-

tions is convex.

• The KKT conditions are sufficient and necessary for a global solution.

• The following duality holds: if (z∗, λ∗) solve the primal problem (4),

they also solve the dual problem

max
z,λ

L(z, λ)

subject to ∇zL(z, λ) = 0, λi ≥ 0.

Linear SVM

The separable case.

• The Primal:

min
β,β0

1

2
‖β‖2

subject to yi(xi · β + β0)− 1 ≥ 0

• Lagrange function L(β, β0, λ1, . . . , λn):

L =
1

2
‖β‖2 −

∑
i

λiyi(x
t
iβ + β0) +

∑
i

λi

• KKT conditions:

∇βL = 0 =⇒ β =
∑
i

λiyixi (5)

∇β0L = 0 =⇒
∑

λiyi = 0 (6)

λi ≥ 0

yi(xi · β + β0)− 1 ≥ 0

λi

[
yi(xi · β + β0)− 1

]
= 0
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Using (5) and (6), we can rewrite the Lagrange function L as

L =
1

2

(∑
i

λiyixi

)2
−
∑
i

λiyixi

(∑
j

λjyjxj

)
+
∑
i

λi

=
∑
i

λi −
1

2

∑
i,j

λiλjyiyj(xi · xj),

where xi · xj denotes the inner product between two vectors, which is

equal to xtixj .

• The Dual

max
λ1:n

∑
λi −

1

2

∑
i,j

λiλjyiyj(xi · xj)

subj to
∑

λiyi = 0, λi ≥ 0

The affine constraint
∑
λiyi = 0 can be eliminated. Define x̃ = (x, 1).

Then∑
i,j

λiλjyiyj(x̃i · x̃j) =
∑
i,j

λiλjyiyj(xi · xj + 1)

=
∑
i,j

λiλjyiyj(xi · xj) +
(∑

i

λiyi
)2

=
∑
i,j

λiλjyiyj(xi · xj).

The dual can be expressed as

min
λ

[1

2
λtKλ− 1tλ

]
, subject to λi ≥ 0,

where K is an n × n matrix with Kij = yiyj(x̃i · x̃j). Although both

are convex quadratic optimization problems, the dual is easier to solve

than the primal since the constraints are just bound constraints. For

example, the dual can be solved by a coordinate descent algorithm1.

Note that the optimization for a single λi is in closed form.

1“A Dual Coordinate Descent Method for Large-scale Linear SVM” https://www.

csie.ntu.edu.tw/~cjlin/papers/cddual.pdf.
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Another advantage of working with the dual is that we can use the

kernel trick to solve for nonlinear SVM using the same algorithm.

The non-separable case.

• The Primal

min
1

2
‖β‖2 + γ

∑
ξi

subject to yi(xi · β + β0)− 1 + ξi ≥ 0,

ξi ≥ 0

• The Dual

max
λi

∑
λi −

1

2

∑
i,j

λiλjyiyj(xi · xj)

subject to
∑

λiyi = 0, 0 ≤ λi ≤ γ.

Kernels

Consider a symmetric bivariate function K(x,x′) defined on Rp × Rp. Can

any symmetric bivariate function K(x,x′) be a kernel? The answer is

No. Not every symmetric bivariate function K(x,x′) can be written as

K(x,x′) = Φ(x) · Φ(x′).

A symmetric bivariate function K(·, ·) is said to be positive semidefinite

(psd), if for any x1, . . . ,xm ∈ Rp and any real numbers α1, . . . , αm ∈ R,∑
i

∑
j

αiαjK(xi,xj) ≥ 0, (7)

where m is any positive integer. Then by Mercer’s theorem, K has the

following eigen decomposition

K(x,x′) =

∞∑
j=1

djφj(x)φj(x
′),

where dj ’s are decreasing non-negative eigenvalues and φj ’s are a set of

orthonormal eigenfunctions. So if we define a mapping

Φ(x) =
(√

d1φ1(x),
√
d2φ2(x), · · ·

)
,
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then K(x,x′) = Φ(x) · Φ(x′).

Given x1, . . . ,xm ∈ Rp, we can construct an m ×m matrix K (known

as the Gram matrix) with its (i, j)th entry being K(xi,xj). Then condition

(7) implies that for any m points in Rp, the corresponding Gram matrix

Km×m must be psd - for any vector α = (α1, . . . , αm)T ,

αtKα ≥ 0.

When extending linear SVM to non-linear SVM, we use the so-called

Kernel trick: if an algorithm only uses the inner product between xi’s, then

we can operate this algorithm in a new feature space, which is constructed

by embedding a point x to a new feature vector Φ(x), without explicitly

constructing the mapping Φ; all we need to do is to replace any inner product

xtixj by K(xi,xj). For example, we can have kernel PCA or kernel FDA.
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