
How to Build a Tree?

Three elements:

1. Where to split?

2. When to stop?

3. How to predict at each leaf node?

• A split is denoted by (j, s): split the data
into two parts based on “var j < value s
or not".

• For each split, define a Goodness of
split criterion Φ(j, s), e.g., deduction of
RSS for regression trees.

Start with the root. Try all possible variables j = 1 : p and all possible split values (for each
variable j, sort the n values from the n samples, and choose s to be a middle point of two
adjacent values, so at most (n− 1) possible values for s), and pick the best split, i.e., the split
with the best Φ value. Now, data are divided into the left node and right node. Repeat this
procedure in each node.
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Goodness of Split Φ(j, s)

For Classification tree, we check the gain of
an impurity measure

Φ(j, s) = i(t)−
[
pR · i(tR) + pL · i(tL)

]
where

i(t) = I(p̂t(1), . . . , p̂t(K))

p̂t(j) = frequency of class j at node t

I(· · · ) = an impurity measure.

Pick a split (j, s) that leads to a large
reduction of impurity measure.

An impurity measure is a function
I(p1, . . . , pK) where pj ≥ 0 and

∑
j pj = 1 with

properties

1. maximum occurs at (1/K, . . . , 1/K) (the
most impure node);

2. minimum occurs at pj = 1 (the purest
node)

3. I(· · · ) is symmetric function of p1, . . . , pK ,
i.e., permutation of pj does not affect φ.

Ideally we want the impurity measure to be
small for each node.
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Impurity Measures

• Misclassification rate : 1−maxj pj

• Entropy (deviance): −
∑K
j=1 pj log pj

• Gini index :

K∑
j=1

pj(1− pj) = 1−
∑
j

p2j

Specially when K = 2, we have

Misclassification : min(p, 1− p)

Entropy : p log
1

p
+ (1− p) log

1

1− p
Gini index : 2p(1− p)

The latter two are strictly concave, consequently the corresponding goodness-of-split
measure Φ is always positive (unless the class frequency of the left node and the one of the
right node are exactly the same), therefore they are often used in growing trees.
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Consider a binary classification problem.
Evaluate the following split:

(20, 5) =⇒ (10, 0) + (10, 5).

• A node with 20 samples from “class 1"
and 5 samples from “class 0" is split into
two,

• left node has 10 samples from “class 1"
and 0 samples from “class 0" and

• right node has 10 samples from “class 1"
and 5 samples from “class 0".

• Φ(j, s) based on misclassification rate

5
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= 0

• Φ(j, s) based on entropy[ 5
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5
+
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−15
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·
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15
log
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5
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log
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]
> 0

This split is regarded as zero gain if using
Misclassification, but positive gain if using
Entropy or Gini (which favor splits that lead
to pure nodes).
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Boosting Overview

• AdaBoost
What exactly does it do? The resulting classifier will always have a good prediction
accuracy?

• Forward stage-wise optimization for fitting an additive model
AdaBoost is a special case of this framework with Exponential loss for classification.
Similarly we can develop Boosting algorithms for regression/classification with other loss
functions.
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AdaBoost

Consider a binary classification problem with
y = ±1. classifier

g : x −→ {−1, 1}.

Here g is a weak classifier, i.e., its
performance is just slightly better than random
guessing. In fact, it’s okay that g is even worse
than random guessing. Then you’ll see that
boosting automatically uses −g(x).

Aim : use a combination of weak classifiers to
improve the performance.

• Sequentially modify the weights on the
training data {wi}ni=1;

• Sequentially pick classifiers gt(x);a

• Output the weighted version

G(x) = sign
( T∑
t=1

αtgt(x)
)
.

a The algorithm still works if gt(x)’s are chosen randomly.
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The Algorithm

1. Initialize the weights w(1)
i = 1/n, i = 1, 2, . . . , n.

2. For t = 1 to T :

(a) Fit a classifier gt(x);
(b) Compute the training error wrt weights w(t)

i ’s

εt =
∑
i

w
(t)
i I
(
yi 6= gt(xi)

)
(c) Compute αt = 1

2
log 1−εt

εt
. Note αt < 0 if εt > 1/2.

(d) Update weights

w
(t+1)
i = w

(t)
i

exp[−αtyigt(xi)]
Zt

,

where Zt is the normalizing constant to ensure that
∑
i w

(t+1)
i = 1.

3. Output GT (x) = sign
(∑T

t=1 αtgt(x)
)
.
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Proof

Show that the Training Error (measured by mis-classification rate) will go to 0 (not
necessarily monotonically) when T →∞.

Training-Err(GT ) =
∑
i

1

n
I
(
yi 6= sign

( T∑
t=1

αtgt(xi)
))

=
∑
i

1

n
I
( T∑
t=1

yiαtgt(xi) < 0
)

≤
∑
i

1

n
exp

(
−

T∑
t=1

αtyigt(xi)
)

I(z < 0) < e−z, z ∈ R

≤
T∏
t=1

Zt
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n∑
i=1

1

n
exp

(
−

T∑
t=1

αtyigt(xi)
)

=
∑
i

1

n

T∏
t=1

exp
(
− αtyigt(xi)

)
=

∑
i

w
(1)
i

T∏
t=1

w
(t+1)
i

w
(t)
i

Zt

=
∑
i

w
(1)
i

w
(2)
i

w
(1)
i

· · · w
(T )
i

w
(T−1)
i

w
(T+1)
i

w
(T )
i

( T∏
t=1

Zt

)
=

( T∏
t=1

Zt

)∑
i

w
(T+1)
i

=

T∏
t=1

Zt,

which decreases with T if εt < 1/2, since

Zt =
∑
i

w
(t)
i exp

(
− αtyigt(xi)

)
=

∑
i:yigt(xi)=1

w
(t)
i exp

(
− αt

)
+

∑
i:yigt(xi)=−1

w
(t)
i exp

(
αt
)

= (1− εt) exp
(
− αt

)
+ εt exp

(
αt
)

= (1− εt)
√

εt
1− εt

+ εt

√
1− εt
εt

= 2
√
εt(1− εt)

< 1
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• We can use a classifier gt(x) whose error rate εt > 1/2 (i.e., worse than
random-guessing).
Then αt < 0, and Adaboost basically uses −gt(x).

• AdaBoost combines weak classifiers to reduce the 0/1 training error (or more
specifically, reduce an upper bound of the training error). The training error of the
combined classifier GT (from Adaboost) is not monotonically decreasing with T .
After each iteration, Adaboost decreases a particular upper-bound of the 0/1 training
error. So in a long run, the training error will be pushed to zero.

• The classifier returned by AdaBoost is not guaranteed to have a good performance on
the test set. In fact AdaBoost is prone to overfitting, unless it stops early.
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A Toy Example

Consider a toy example: three observations
with two from class -1 and one from class 1.

Suppose at iteration 1, we pick a classifier
h1(x) that predicts all three obs to be from
class 1. How we update their weights?

ε1 = 2/3

α1 =
1

2
log

1− ε1
ε1

= − log 2

2

Then exp(−α1yih1(xi)) equals 1/
√

2 or
√

2.
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Boosting: Forward Stagewise Additive Modeling

Consider an Additive Model:

f(x) =

T∑
t=1

αtgt(x),

where gt(x) is a classifier or a regression
function.

Forward Stagewise Optimization
(1) f0(x) = 0

(2) For t = 1 to T ,
• Given ft−1, choose (αt, gt) to minimize∑

i

L
(
yi, ft−1(xi)

)
+ αgt(xi); (1)

• Update ft(x) = ft−1(x) + αtgt(xi).

Boosting algorithms can take various forms, depending on the choice of the base model
gt(x), the choice of the loss function L(y, f(x)), and how optimization is done at (1).
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AdaBoost is equivalent to forward stagewise
additive modeling using an exponential loss

L(y, f(x)) = exp(−yf(x)).

arg min
α,g

∑
i

L(yi, ft−1(xi) + αg(xi))

= arg min
α,g

∑
i

exp[−yift−1(xi)− yiαg(xi)]

= arg min
α,g

∑
i

w
(t)
i exp(−αyig(xi)).

• Instead of optimizing over both α and g,
AdaBoost just randomly picks a classifier
gt(x), and then optimize over α.

• For any given gt(x), denote the
corresponding weighted empirical error
rate by εt, then the optimal αt is given by

αt =
1

2
log

1− εt
εt

.

F18 STAT 542 F. Liang 13



For regression, we can use L2-Boosting.

• Loss function is the squared error,

(yi − ft−1(xi)− αg(xi))
2

= (rit − αg(xi))
2.

• At the t-th iteration,

ft(x) = ft−1(x) + β̂tx
(t),

where x(t) denotes the variable (possibly
random) chosen at the t-th iteration, and
β̂t is the estimated coefficient based on
the partial residuals rit.

When doing the optimization at the t-th
iteration,

• for exponential loss, the effect of the
previous (t− 1) functions becomes
weights;

• for squared loss, the effect of the previous
(t− 1) functions becomes partial
residuals.

For many other loss functions, we don’t have
such a simple form for the effect of the
previous (t− 1) functions, then we can
approximate L(yi, ft−1(xi) + g(xi)) by Taylor
expansions ( Gradient Boosting).
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