Three elements:

- 1. Where to split?
- 2. When to stop?
- 3. How to predict at each leaf node?

- A split is denoted by (j, s): split the data into two parts based on "var j < value s or not".
- For each split, define a Goodness of split criterion Φ(j, s), e.g., deduction of RSS for regression trees.

Start with the root. Try all possible variables j = 1 : p and all possible split values (for each variable j, sort the n values from the n samples, and choose s to be a middle point of two adjacent values, so at most (n - 1) possible values for s), and pick the best split, i.e., the split with the best Φ value. Now, data are divided into the left node and right node. Repeat this procedure in each node.

Goodness of Split $\Phi(j,s)$

For **Classification tree**, we check the gain of an **impurity measure**

$$\Phi(j,s) = i(t) - \left[p_R \cdot i(t_R) + p_L \cdot i(t_L)\right]$$

where

$$i(t) = I(\hat{p}_t(1), \dots, \hat{p}_t(K))$$

 $\hat{p}_t(j) =$ frequency of class j at node t

 $I(\cdots)$ = an impurity measure.

Pick a split (j, s) that leads to a large reduction of impurity measure.

An **impurity measure** is a function $I(p_1, ..., p_K)$ where $p_j \ge 0$ and $\sum_j p_j = 1$ with properties

- maximum occurs at (1/K,...,1/K) (the most impure node);
- 2. minimum occurs at $p_j = 1$ (the purest node)
- 3. $I(\cdots)$ is symmetric function of p_1, \ldots, p_K , i.e., permutation of p_j does not affect ϕ .

Ideally we want the impurity measure to be small for each node.

Impurity Measures

- Misclassification rate : $1 \max_j p_j$
- Entropy (deviance): $-\sum_{j=1}^{K} p_j \log p_j$
- Gini index :

$$\sum_{j=1}^{K} p_j (1 - p_j) = 1 - \sum_j p_j^2$$

Specially when K = 2, we have

$$\begin{array}{lll} \text{Misclassification} & : & \min(p,1-p) \\ & \text{Entropy} & : & p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p} \\ & \text{Gini index} & : & 2p(1-p) \end{array}$$

The latter two are strictly **concave**, consequently the corresponding goodness-of-split measure Φ is always positive (unless the class frequency of the left node and the one of the right node are exactly the same), therefore they are often used in growing trees.

Consider a binary classification problem. Evaluate the following split:

 $(20,5) \Longrightarrow (10,0) + (10,5).$

- A node with 20 samples from "class 1" and 5 samples from "class 0" is split into two,
- left node has 10 samples from "class 1" and 0 samples from "class 0" and
- right node has 10 samples from "class 1" and 5 samples from "class 0".

• $\Phi(j,s)$ based on misclassification rate

$$\frac{5}{25} - \frac{10}{25} \cdot \frac{0}{10} - \frac{15}{25} \cdot \frac{5}{15} = 0$$

• $\Phi(j,s)$ based on entropy

$$\begin{bmatrix} \frac{5}{25} \log \frac{25}{5} + \frac{20}{25} \log \frac{25}{20} \end{bmatrix} - \frac{10}{25} \cdot 0 \\ -\frac{15}{25} \cdot \begin{bmatrix} \frac{5}{15} \log \frac{15}{5} + \frac{10}{15} \log \frac{15}{10} \end{bmatrix} > 0$$

This split is regarded as zero gain if using Misclassification, but positive gain if using **Entropy or Gini** (which favor splits that lead to **pure nodes**).

AdaBoost

What exactly does it do? The resulting classifier will always have a good prediction accuracy?

• Forward stage-wise optimization for fitting an additive model

AdaBoost is a special case of this framework with Exponential loss for classification. Similarly we can develop Boosting algorithms for regression/classification with other loss functions.

AdaBoost

Consider a binary classification problem with $y = \pm 1$. classifier

 $g: x \longrightarrow \{-1, 1\}.$

Here g is a **weak classifier**, i.e., its performance is just slightly better than random guessing. In fact, it's okay that g is even worse than random guessing. Then you'll see that boosting automatically uses -g(x). **Aim** : use a combination of weak classifiers to improve the performance.

- Sequentially modify the weights on the training data {w_i}ⁿ_{i=1};
- Sequentially pick classifiers $g_t(x)$;^{*a*}
- Output the weighted version

$$G(x) = \operatorname{sign} \left(\sum_{t=1}^{T} \alpha_t g_t(x) \right).$$

^{*a*} The algorithm still works if $g_t(x)$'s are chosen randomly.

The Algorithm

- 1. Initialize the weights $w_i^{(1)} = 1/n$, $i = 1, 2, \ldots, n$.
- **2.** For t = 1 to T:
 - (a) Fit a classifier $g_t(x)$;
 - (b) Compute the training error wrt weights $w_i^{(t)}$'s

$$\epsilon_t = \sum_i w_i^{(t)} I\left(y_i \neq g_t(x_i)\right)$$

- (c) Compute $\alpha_t = \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t}$. Note $\alpha_t < 0$ if $\epsilon_t > 1/2$.
- (d) Update weights

$$w_i^{(t+1)} = w_i^{(t)} \frac{\exp[-\alpha_t y_i g_t(x_i)]}{Z_t},$$

where Z_t is the normalizing constant to ensure that $\sum_i w_i^{(t+1)} = 1$.

3. Output $G_T(x) = \operatorname{sign}\left(\sum_{t=1}^T \alpha_t g_t(x)\right)$.

Proof

Show that the Training Error (measured by mis-classification rate) will go to 0 (not necessarily monotonically) when $T \to \infty$.

$$\begin{aligned} \operatorname{Training-Err}(G_T) &= \sum_i \frac{1}{n} I\Big(y_i \neq \operatorname{sign}\big(\sum_{t=1}^T \alpha_t g_t(x_i)\big)\Big) \\ &= \sum_i \frac{1}{n} I\Big(\sum_{t=1}^T y_i \alpha_t g_t(x_i) < 0\Big) \\ &\leq \sum_i \frac{1}{n} \exp\Big(-\sum_{t=1}^T \alpha_t y_i g_t(x_i)\Big) \quad I(z < 0) < e^{-z}, z \in \mathbb{R} \\ &\leq \prod_{t=1}^T Z_t \end{aligned}$$

$$\sum_{i=1}^{n} \frac{1}{n} \exp\left(-\sum_{t=1}^{T} \alpha_{t} y_{i} g_{t}(x_{i})\right)$$

$$= \sum_{i} \frac{1}{n} \prod_{t=1}^{T} \exp\left(-\alpha_{t} y_{i} g_{t}(x_{i})\right)$$

$$= \sum_{i} w_{i}^{(1)} \prod_{t=1}^{T} \frac{w_{i}^{(t+1)}}{w_{i}^{(t)}} Z_{t}$$

$$= \sum_{i} w_{i}^{(1)} \frac{w_{i}^{(2)}}{w_{i}^{(1)}} \cdots \frac{w_{i}^{(T)}}{w_{i}^{(T-1)}} \frac{w_{i}^{(T+1)}}{w_{i}^{(T)}} \left(\prod_{t=1}^{T} Z_{t}\right)$$

$$= \left(\prod_{t=1}^{T} Z_{t}\right) \sum_{i} w_{i}^{(T+1)}$$

$$= \prod_{t=1}^{T} Z_{t},$$

which decreases with T if $\epsilon_t < 1/2$, since

$$Z_t = \sum_{i} w_i^{(t)} \exp\left(-\alpha_t y_i g_t(x_i)\right)$$

$$= \sum_{i:y_i g_t(x_i)=1} w_i^{(t)} \exp\left(-\alpha_t\right) +$$

$$\sum_{i:y_i g_t(x_i)=-1} w_i^{(t)} \exp\left(\alpha_t\right)$$

$$= (1 - \epsilon_t) \exp\left(-\alpha_t\right) + \epsilon_t \exp\left(\alpha_t\right)$$

$$= (1 - \epsilon_t) \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} + \epsilon_t \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}$$

$$= 2\sqrt{\epsilon_t(1 - \epsilon_t)}$$

$$< 1$$

• We can use a classifier $g_t(x)$ whose error rate $\epsilon_t > 1/2$ (i.e., worse than random-guessing).

Then $\alpha_t < 0$, and Adaboost basically uses $-g_t(x)$.

- AdaBoost combines weak classifiers to reduce the 0/1 training error (or more specifically, reduce an upper bound of the training error). The training error of the combined classifier G_T (from Adaboost) is **not** monotonically decreasing with T. After each iteration, Adaboost decreases a particular upper-bound of the 0/1 training error. So in a long run, the training error will be pushed to zero.
- The classifier returned by AdaBoost is not guaranteed to have a good performance on the test set. In fact AdaBoost is prone to overfitting, unless it stops early.

A Toy Example

Consider a toy example: three observations with two from class -1 and one from class 1.

Suppose at iteration 1, we pick a classifier $h_1(x)$ that predicts all three obs to be from class 1. How we update their weights?

$$\begin{aligned} \epsilon_1 &= 2/3\\ \alpha_1 &= \frac{1}{2}\log\frac{1-\epsilon_1}{\epsilon_1} = -\frac{\log 2}{2} \end{aligned}$$

Then $\exp(-\alpha_1 y_i h_1(x_i))$ equals $1/\sqrt{2}$ or $\sqrt{2}$.

Boosting: Forward Stagewise Additive Modeling

Consider an Additive Model:

$$f(x) = \sum_{t=1}^{T} \alpha_t g_t(x),$$

where $g_t(x)$ is a classifier or a regression function.

Forward Stagewise Optimization

(1)
$$f_0(x) = 0$$

(2) For t = 1 to T,

 \bullet Given $f_{t-1},$ choose (α_t,g_t) to minimize

$$\sum_{i} L\Big(y_i, f_{t-1}(x_i)\Big) + \alpha g_t(x_i); \qquad (1)$$

• Update
$$f_t(x) = f_{t-1}(x) + \alpha_t g_t(x_i)$$
.

Boosting algorithms can take various forms, depending on the choice of the base model $g_t(x)$, the choice of the loss function L(y, f(x)), and how optimization is done at (1).

AdaBoost is equivalent to forward stagewise additive modeling using an exponential loss

$$L(y, f(x)) = \exp(-yf(x)).$$

$$\arg\min_{\alpha,g} \sum_{i} L(y_i, f_{t-1}(x_i) + \alpha g(x_i))$$

$$= \arg\min_{\alpha,g} \sum_{i} \exp[-y_i f_{t-1}(x_i) - y_i \alpha g(x_i)]$$

$$= \arg\min_{\alpha,g} \sum_{i} w_i^{(t)} \exp(-\alpha y_i g(x_i)).$$

- Instead of optimizing over both α and g,
 AdaBoost just randomly picks a classifier g_t(x), and then optimize over α.
- For any given g_t(x), denote the corresponding weighted empirical error rate by ε_t, then the optimal α_t is given by

$$\alpha_t = \frac{1}{2}\log\frac{1-\epsilon_t}{\epsilon_t}$$

)]

For regression, we can use L_2 -Boosting.

• Loss function is the squared error,

$$(y_i - f_{t-1}(x_i) - \alpha g(x_i))^2$$

= $(r_{it} - \alpha g(x_i))^2$.

• At the *t*-th iteration,

 $f_t(x) = f_{t-1}(x) + \hat{\beta}_t x^{(t)},$

where $x^{(t)}$ denotes the variable (possibly random) chosen at the *t*-th iteration, and $\hat{\beta}_t$ is the estimated coefficient based on the partial residuals r_{it} .

When doing the optimization at the *t*-th iteration,

- for exponential loss, the effect of the previous (t 1) functions becomes weights;
- for squared loss, the effect of the previous (t-1) functions becomes partial residuals.

For many other loss functions, we don't have such a simple form for the effect of the previous (t - 1) functions, then we can approximate $L(y_i, f_{t-1}(x_i) + g(x_i))$ by Taylor expansions (Gradient Boosting).