
How to Build a Tree?

Three elements:

1. Where to split?

2. When to stop?

3. How to predict at each leaf node?

• A split is denoted by (j, s): split the data
into two parts based on “var j < value s
or not".

• For each split, define a Goodness of
split criterion Φ(j, s), e.g., deduction of
RSS for regression trees.

Start with the root. Try all possible variables j = 1 : p and all possible split values (for each
variable j, sort the n values from the n samples, and choose s to be a middle point of two
adjacent values, so at most (n− 1) possible values for s), and pick the best split, i.e., the split
with the best Φ value. Now, data are divided into the left node and right node. Repeat this
procedure in each node.

F18 STAT 542 F. Liang 1

Goodness of Split Φ(j, s)

For Classification tree, we check the gain of
an impurity measure

Φ(j, s) = i(t)−
[
pR · i(tR) + pL · i(tL)

]
where

i(t) = I(p̂t(1), . . . , p̂t(K))

p̂t(j) = frequency of class j at node t

I(· · ·) = an impurity measure.

Pick a split (j, s) that leads to a large
reduction of impurity measure.

An impurity measure is a function
I(p1, . . . , pK) where pj ≥ 0 and

∑
j pj = 1 with

properties

1. maximum occurs at (1/K, . . . , 1/K) (the
most impure node);

2. minimum occurs at pj = 1 (the purest
node)

3. I(· · ·) is symmetric function of p1, . . . , pK ,
i.e., permutation of pj does not affect φ.

Ideally we want the impurity measure to be
small for each node.

F18 STAT 542 F. Liang 2

Impurity Measures

• Misclassification rate : 1−maxj pj

• Entropy (deviance): −
∑K
j=1 pj log pj

• Gini index :

K∑
j=1

pj(1− pj) = 1−
∑
j

p2j

Specially when K = 2, we have

Misclassification : min(p, 1− p)

Entropy : p log
1

p
+ (1− p) log

1

1− p
Gini index : 2p(1− p)

The latter two are strictly concave, consequently the corresponding goodness-of-split
measure Φ is always positive (unless the class frequency of the left node and the one of the
right node are exactly the same), therefore they are often used in growing trees.

F18 STAT 542 F. Liang 3

Consider a binary classification problem.
Evaluate the following split:

(20, 5) =⇒ (10, 0) + (10, 5).

• A node with 20 samples from “class 1"
and 5 samples from “class 0" is split into
two,

• left node has 10 samples from “class 1"
and 0 samples from “class 0" and

• right node has 10 samples from “class 1"
and 5 samples from “class 0".

• Φ(j, s) based on misclassification rate

5

25
− 10

25
· 0

10
− 15

25
· 5

15
= 0

• Φ(j, s) based on entropy[5

25
log

25

5
+

20

25
log

25

20

]
− 10

25
· 0

−15

25
·
[5

15
log

15

5
+

10

15
log

15

10

]
> 0

This split is regarded as zero gain if using
Misclassification, but positive gain if using
Entropy or Gini (which favor splits that lead
to pure nodes).

F18 STAT 542 F. Liang 4

Boosting Overview

• AdaBoost
What exactly does it do? The resulting classifier will always have a good prediction
accuracy?

• Forward stage-wise optimization for fitting an additive model
AdaBoost is a special case of this framework with Exponential loss for classification.
Similarly we can develop Boosting algorithms for regression/classification with other loss
functions.

F18 STAT 542 F. Liang 5

AdaBoost

Consider a binary classification problem with
y = ±1. classifier

g : x −→ {−1, 1}.

Here g is a weak classifier, i.e., its
performance is just slightly better than random
guessing. In fact, it’s okay that g is even worse
than random guessing. Then you’ll see that
boosting automatically uses −g(x).

Aim : use a combination of weak classifiers to
improve the performance.

• Sequentially modify the weights on the
training data {wi}ni=1;

• Sequentially pick classifiers gt(x);a

• Output the weighted version

G(x) = sign
(T∑
t=1

αtgt(x)
)
.

a The algorithm still works if gt(x)’s are chosen randomly.

F18 STAT 542 F. Liang 6

The Algorithm

1. Initialize the weights w(1)
i = 1/n, i = 1, 2, . . . , n.

2. For t = 1 to T :

(a) Fit a classifier gt(x);
(b) Compute the training error wrt weights w(t)

i ’s

εt =
∑
i

w
(t)
i I
(
yi 6= gt(xi)

)
(c) Compute αt = 1

2
log 1−εt

εt
. Note αt < 0 if εt > 1/2.

(d) Update weights

w
(t+1)
i = w

(t)
i

exp[−αtyigt(xi)]
Zt

,

where Zt is the normalizing constant to ensure that
∑
i w

(t+1)
i = 1.

3. Output GT (x) = sign
(∑T

t=1 αtgt(x)
)
.

F18 STAT 542 F. Liang 7

Proof

Show that the Training Error (measured by mis-classification rate) will go to 0 (not
necessarily monotonically) when T →∞.

Training-Err(GT) =
∑
i

1

n
I
(
yi 6= sign

(T∑
t=1

αtgt(xi)
))

=
∑
i

1

n
I
(T∑
t=1

yiαtgt(xi) < 0
)

≤
∑
i

1

n
exp

(
−

T∑
t=1

αtyigt(xi)
)

I(z < 0) < e−z, z ∈ R

≤
T∏
t=1

Zt

F18 STAT 542 F. Liang 8

n∑
i=1

1

n
exp

(
−

T∑
t=1

αtyigt(xi)
)

=
∑
i

1

n

T∏
t=1

exp
(
− αtyigt(xi)

)
=

∑
i

w
(1)
i

T∏
t=1

w
(t+1)
i

w
(t)
i

Zt

=
∑
i

w
(1)
i

w
(2)
i

w
(1)
i

· · · w
(T)
i

w
(T−1)
i

w
(T+1)
i

w
(T)
i

(T∏
t=1

Zt

)
=

(T∏
t=1

Zt

)∑
i

w
(T+1)
i

=

T∏
t=1

Zt,

which decreases with T if εt < 1/2, since

Zt =
∑
i

w
(t)
i exp

(
− αtyigt(xi)

)
=

∑
i:yigt(xi)=1

w
(t)
i exp

(
− αt

)
+

∑
i:yigt(xi)=−1

w
(t)
i exp

(
αt
)

= (1− εt) exp
(
− αt

)
+ εt exp

(
αt
)

= (1− εt)
√

εt
1− εt

+ εt

√
1− εt
εt

= 2
√
εt(1− εt)

< 1

F18 STAT 542 F. Liang 9

• We can use a classifier gt(x) whose error rate εt > 1/2 (i.e., worse than
random-guessing).
Then αt < 0, and Adaboost basically uses −gt(x).

• AdaBoost combines weak classifiers to reduce the 0/1 training error (or more
specifically, reduce an upper bound of the training error). The training error of the
combined classifier GT (from Adaboost) is not monotonically decreasing with T .
After each iteration, Adaboost decreases a particular upper-bound of the 0/1 training
error. So in a long run, the training error will be pushed to zero.

• The classifier returned by AdaBoost is not guaranteed to have a good performance on
the test set. In fact AdaBoost is prone to overfitting, unless it stops early.

F18 STAT 542 F. Liang 10

A Toy Example

Consider a toy example: three observations
with two from class -1 and one from class 1.

Suppose at iteration 1, we pick a classifier
h1(x) that predicts all three obs to be from
class 1. How we update their weights?

ε1 = 2/3

α1 =
1

2
log

1− ε1
ε1

= − log 2

2

Then exp(−α1yih1(xi)) equals 1/
√

2 or
√

2.

F18 STAT 542 F. Liang 11

Boosting: Forward Stagewise Additive Modeling

Consider an Additive Model:

f(x) =

T∑
t=1

αtgt(x),

where gt(x) is a classifier or a regression
function.

Forward Stagewise Optimization
(1) f0(x) = 0

(2) For t = 1 to T ,
• Given ft−1, choose (αt, gt) to minimize∑

i

L
(
yi, ft−1(xi)

)
+ αgt(xi); (1)

• Update ft(x) = ft−1(x) + αtgt(xi).

Boosting algorithms can take various forms, depending on the choice of the base model
gt(x), the choice of the loss function L(y, f(x)), and how optimization is done at (1).

F18 STAT 542 F. Liang 12

AdaBoost is equivalent to forward stagewise
additive modeling using an exponential loss

L(y, f(x)) = exp(−yf(x)).

arg min
α,g

∑
i

L(yi, ft−1(xi) + αg(xi))

= arg min
α,g

∑
i

exp[−yift−1(xi)− yiαg(xi)]

= arg min
α,g

∑
i

w
(t)
i exp(−αyig(xi)).

• Instead of optimizing over both α and g,
AdaBoost just randomly picks a classifier
gt(x), and then optimize over α.

• For any given gt(x), denote the
corresponding weighted empirical error
rate by εt, then the optimal αt is given by

αt =
1

2
log

1− εt
εt

.

F18 STAT 542 F. Liang 13

For regression, we can use L2-Boosting.

• Loss function is the squared error,

(yi − ft−1(xi)− αg(xi))
2

= (rit − αg(xi))
2.

• At the t-th iteration,

ft(x) = ft−1(x) + β̂tx
(t),

where x(t) denotes the variable (possibly
random) chosen at the t-th iteration, and
β̂t is the estimated coefficient based on
the partial residuals rit.

When doing the optimization at the t-th
iteration,

• for exponential loss, the effect of the
previous (t− 1) functions becomes
weights;

• for squared loss, the effect of the previous
(t− 1) functions becomes partial
residuals.

For many other loss functions, we don’t have
such a simple form for the effect of the
previous (t− 1) functions, then we can
approximate L(yi, ft−1(xi) + g(xi)) by Taylor
expansions (Gradient Boosting).

F18 STAT 542 F. Liang 14

