Multiple Linear Regression

» features/predictors: Xi,...,X, Housing Data

Y': sale price of a house
X1: # of bedrooms
The linear regression model assumes Xo: # of bathrooms

> response/outcome variable: Y

X3: square feet

Y=03+5X1i+ - +BXp+e i

where
(o is the intercept
Bj is the regression coefficient associated with X

e is the error term often assumed to have mean zero

and variance o2.
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Matrix Representation

Express the regression model on (x;1, ..., Zip, ¥;)i; in the following matrix form
Y1 Bo + w1181 + w1282 + -+ 318, +e1
Y2 - Bo + 22181 + 2282 + - 4+ T2pfBp + €2
Yn BO + mnlﬂl + xn252 +---+ xnpﬂp + én
1z -0z Bo €1
1 291 -+ 9 B1 &)
= P +
1
1 2y - Tnp 5}) €n

Ynx1 = Xn><(p+1)/8(p+1)><1+en><1



The classical large n small p regression model:

Focus of this week

+ error



The modern large p small n regression model:

Focus of next week

+ error



Least Squares Estimation

Given a set of training data
(i1, - s Tip, Yi)I_q, we estimate the regression
coefficients (o, 51, ..., 8p) by minimizing the

residual sum of squares (RSS)

RSS(ﬂOaﬁla e ,B;D)
= Z (yz —Bo— Brxin — - — ﬂp$ip)2~

=1




Least Squares Estimation: Continued |

Using matrix representation, we can express the regression model as

Ynx1 = XN,X(IM l)ﬁ(1;+1)xl + €, x1.

The least squares method estimates 3 by minimizing

n

RSS(B) = D (i~ fo—waby— -~ winfy)

i=1

ly — X



Least Squares Estimation: Continued Il

Differentiating RSS(83) with respect to 3 and setting to zero, we have

olly — X8|

aﬂ = 0(11+'1)X1 = _QXI(:IM 1)xn (y - X/B)/r,xl

— X'(y —XB) =0 normal equation
—  (X'X)B=X'y

= B=(X'X)"'Xy

Here we assume the rank of X is (p + 1) and then the inverse of the (p + 1) x (p + 1) matrix
(X'X) exists.
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Differentiating RSS(83) with respect to 3 and setting to zero, we have

olly — X8|

8B = 0(11+'1)X1 = _QXI(:IM 1)xn (y - X/B)/r,xl

— X'(y —XB) =0 normal equation
—  (X'X)B=X'y

= B=(X'X)"'Xy

Here we assume the rank of X is (p + 1) and then the inverse of the (p + 1) x (p + 1) matrix
(X'X) exists. What if rank(X) < (p+ 1)? Not a serious issue.



Some LS Outputs

Prediction at a new point x*

J° = Bo+anBrt -+ 2By

Fitted value at x;:

i = Bo+mauafr+-+ xipo'

Residual at x;: 7, = y; — Ui.

RSS = S0 2.

i=1"1

The error variance is estimated by

9 RSS Yl r?

52 = _ i=1"4
n—-p—1 n—-—p-1

The degree of freedom (df) of the

residuals is n — (p + 1). In general

df (residuals) = (sample-size)

—(number-of-linear-coefs)



The Residual Vector

Xir = 0(, 1)1 implies that the residual vector r is subject to (p + 1) equality constraints,

therefore it loses (p + 1) degrees of freedom.
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