Multiple Linear Regression

- features/predictors: X_1, \ldots, X_p
- ightharpoonup response/outcome variable: Y

The linear regression model assumes

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + e$$

where

 β_0 is the intercept

 eta_j is the regression coefficient associated with X_j e is the error term often assumed to have mean zero and variance σ^2 .

Housing Data

Y: sale price of a house

 X_1 : # of bedrooms

 X_2 : # of bathrooms

 X_3 : square feet

.

Multiple Linear Regression

- features/predictors: X_1, \ldots, X_p
- ightharpoonup response/outcome variable: Y

The linear regression model assumes

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \frac{e}{}$$

where

 β_0 is the intercept

 eta_j is the regression coefficient associated with X_j

e is the error term often assumed to have mean zero and variance σ^2

Housing Data

Y: sale price of a house

 X_1 : # of bedrooms

 X_2 : # of bathrooms

 X_3 : square feet

.

Multiple Linear Regression

- features/predictors: X_1, \ldots, X_p
- ightharpoonup response/outcome variable: Y

The linear regression model assumes

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + e$$

where

 β_0 is the intercept

 eta_j is the regression coefficient associated with X_j e is the error term often assumed to have mean zero and variance σ^2

Housing Data

Y: sale price of a house

 X_1 : # of bedrooms

 X_2 : # of bathrooms

 X_3 : square feet

.

Training Data
$$(x_{i1},\ldots,x_{ip},y_i)_{i=1}^n$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + e_i$$

$$i = 1, \dots, n$$

Matrix Representation

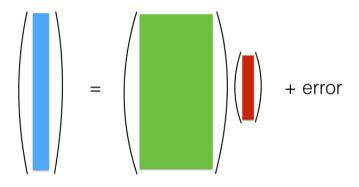
Express the regression model on $(x_{i1}, \dots, x_{ip}, y_i)_{i=1}^n$ in the following matrix form

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} \beta_0 + x_{11}\beta_1 + x_{12}\beta_2 + \dots + x_{1p}\beta_p + e_1 \\ \beta_0 + x_{21}\beta_1 + x_{22}\beta_2 + \dots + x_{2p}\beta_p + e_2 \\ \dots \\ \beta_0 + x_{n1}\beta_1 + x_{n2}\beta_2 + \dots + x_{np}\beta_p + e_n \end{pmatrix}$$

$$= \begin{pmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ 1 & \dots & \dots & \dots \\ 1 & x_{n1} & \dots & x_{np} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_p \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \dots \\ e_n \end{pmatrix}$$

$$\mathbf{y}_{n\times 1} = \mathbf{X}_{n\times (p+1)}\boldsymbol{\beta}_{(p+1)\times 1} + \mathbf{e}_{n\times 1}$$

The classical large n small p regression model:



Focus of this week

The modern large p small n regression model:

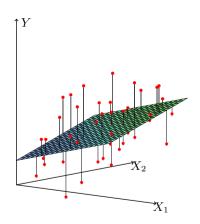
Focus of next week

Least Squares Estimation

Given a set of training data $(x_{i1},\ldots,x_{ip},y_i)_{i=1}^n$, we estimate the regression coefficients $(\beta_0,\beta_1,\ldots,\beta_p)$ by minimizing the residual sum of squares (RSS)

$$RSS(\beta_0, \beta_1, \dots, \beta_p)$$

$$= \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_p x_{ip})^2.$$



Least Squares Estimation: Continued I

Using matrix representation, we can express the regression model as

$$\mathbf{y}_{n\times 1} = \mathbf{X}_{n\times (p+1)}\boldsymbol{\beta}_{(p+1)\times 1} + \mathbf{e}_{n\times 1}.$$

The least squares method estimates β by minimizing

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2$$
$$= \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2.$$

Least Squares Estimation: Continued II

Differentiating RSS(β) with respect to β and setting to zero, we have

$$\begin{array}{lll} \frac{\partial \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2}{\partial \boldsymbol{\beta}} & = & \mathbf{0}_{(p+1)\times 1} = -2\mathbf{X}_{(p+1)\times n}^t (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})_{n\times 1} \\ & \Longrightarrow & \mathbf{X}^t (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \mathbf{0} \quad \text{normal equation} \\ & \Longrightarrow & (\mathbf{X}^t \mathbf{X}) \boldsymbol{\beta} = \mathbf{X}^t \mathbf{y} \\ & \Longrightarrow & \hat{\boldsymbol{\beta}} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{y} \end{array}$$

Here we assume the rank of \mathbf{X} is (p+1) and then the inverse of the $(p+1)\times(p+1)$ matrix $(\mathbf{X}^t\mathbf{X})$ exists.

Least Squares Estimation: Continued II

Differentiating $RSS(\beta)$ with respect to β and setting to zero, we have

$$\begin{array}{lll} \frac{\partial \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2}{\partial \boldsymbol{\beta}} & = & \mathbf{0}_{(p+1)\times 1} = -2\mathbf{X}_{(p+1)\times n}^t (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})_{n\times 1} \\ & \Longrightarrow & \mathbf{X}^t (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \mathbf{0} \quad \text{normal equation} \\ & \Longrightarrow & (\mathbf{X}^t \mathbf{X}) \boldsymbol{\beta} = \mathbf{X}^t \mathbf{y} \\ & \Longrightarrow & \hat{\boldsymbol{\beta}} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{y} \end{array}$$

Here we assume the rank of X is (p+1) and then the inverse of the $(p+1)\times(p+1)$ matrix (X^tX) exists. What if $\operatorname{rank}(X)<(p+1)$? Not a serious issue.

Some LS Outputs

Prediction at a new point x^*

$$\hat{y}^* = \hat{\beta}_0 + x_{i1}^* \hat{\beta}_1 + \dots + x_{ip}^* \hat{\beta}_p.$$

Fitted value at x_i :

$$\hat{y}_i = \hat{\beta}_0 + x_{i1}\hat{\beta}_1 + \dots + x_{ip}\hat{\beta}_p.$$

Residual at \mathbf{x}_i : $r_i = y_i - \hat{y}_i$.

$$RSS = \sum_{i=1}^{n} r_i^2.$$

The error variance is estimated by

$$\hat{\sigma}^2 = \frac{\text{RSS}}{n - p - 1} = \frac{\sum_{i=1}^{n} r_i^2}{n - p - 1}$$

The degree of freedom (df) of the residuals is n - (p + 1). In general

$$\begin{array}{rcl} \textit{df}(\mathsf{residuals}) & = & (\mathsf{sample}\text{-}\mathsf{size}) \\ \\ & - (\mathsf{number}\text{-}\mathsf{of}\text{-}\mathsf{linear}\text{-}\mathsf{coefs}) \end{array}$$

The Residual Vector

 $\mathbf{X}^t \mathbf{r} = \mathbf{0}_{(p+1) \times 1}$ implies that the residual vector \mathbf{r} is subject to (p+1) equality constraints, therefore it loses (p+1) degrees of freedom.

