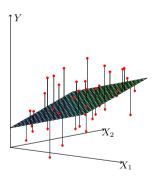
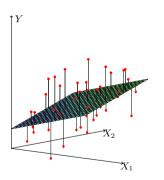
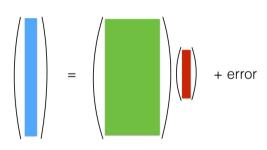
Geometric Interpretation of LS



Geometric Interpretation of LS





Vectors

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} \in \mathbb{R}^2, \quad \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^3, \quad \mathbf{v}_{n \times 1} = \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{pmatrix} \in \mathbb{R}^n$$

A point $\in \mathbb{R}^n$ corresponds to a vector starting from the origin and pointing to

Vector = Point

that point.

addition and scalar multiplication

$$2\begin{pmatrix} 1\\2\\0 \end{pmatrix} + 3\begin{pmatrix} 3\\1\\1 \end{pmatrix} = \begin{pmatrix} 2\\4\\0 \end{pmatrix} + \begin{pmatrix} 9\\3\\3 \end{pmatrix}$$
$$= \begin{pmatrix} 11\\7\\3 \end{pmatrix}$$

Linear Subspace

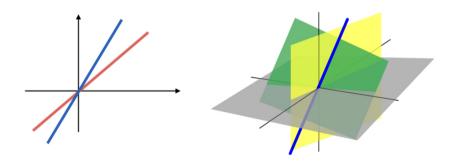
Let \mathcal{M} be a collection of vectors from \mathbb{R}^n . \mathcal{M} is a linear subspace if \mathcal{M} is closed under linear combinations.

Linear Subspace

Let \mathcal{M} be a collection of vectors from \mathbb{R}^n . \mathcal{M} is a linear subspace if \mathcal{M} is closed under linear combinations.

- You can image a linear subspace as <u>a bag of vectors</u>. For any two vectors in of that bag (\mathbf{u}, \mathbf{v}) , their linear combinations (e.g., $\mathbf{u} 2\mathbf{v}$), are also in the bag.
- The two vectors could be the same (i.e., you are allowed to create copies of vectors in that bag). So $\mathbf{0} = \mathbf{u} \mathbf{u}$ is in any linear subspace (i.e., any linear subspace should pass the origin).

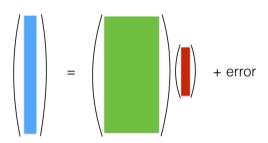
Examples of Linear Subspaces



Column Space $C(\mathbf{X})$

Columns of X form a linear subspace in \mathbb{R}^n , denoted by C(X), which consists of vectors that can be written as linear combinations of columns of X, i.e.,

$$C(\mathbf{X}) = {\mathbf{X}\boldsymbol{\beta}, \ \boldsymbol{\beta} \in \mathbb{R}^{p+1}}.$$

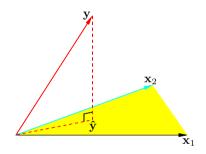


The Geometric Interpretation of LS

Recall that the LS optimization

$$\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2,$$

which is equivalent to finding a vector \mathbf{v} from the subspace $C(\mathbf{X})$ that minimizes $\|\mathbf{y} - \mathbf{v}\|^2$.



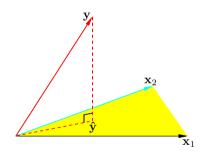
The Geometric Interpretation of LS

Recall that the LS optimization

$$\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2,$$

which is equivalent to finding a vector \mathbf{v} from the subspace $C(\mathbf{X})$ that minimizes $\|\mathbf{y} - \mathbf{v}\|^2$.

Intuitively we know what the optimal \mathbf{v} is: it's the projection of \mathbf{y} onto the space $C(\mathbf{X})$.



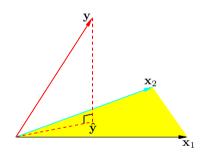
The Geometric Interpretation of LS

Recall that the LS optimization

$$\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2,$$

which is equivalent to finding a vector \mathbf{v} from the subspace $C(\mathbf{X})$ that minimizes $\|\mathbf{y} - \mathbf{v}\|^2$.

Intuitively we know what the optimal \mathbf{v} is: it's the projection of \mathbf{y} onto the space $C(\mathbf{X})$.



The essence of LS: decompose the data vector **y** into two orthogonal components,

$$\mathbf{y}_{n\times 1} = \hat{\mathbf{y}}_{n\times 1} + \mathbf{r}_{n\times 1}.$$

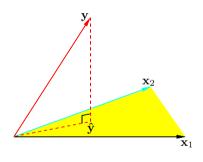
Goodness of Fit: R-square

We measure how well the model fits the data via \mathbb{R}^2 (fraction of variance explained)

$$R^{2} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}} = \frac{\|\hat{\mathbf{y}} - \bar{y}\|^{2}}{\|\mathbf{y} - \bar{y}\|^{2}}$$
$$= \frac{\|\mathbf{y} - \bar{y}\|^{2} - \|\mathbf{r}\|^{2}}{\|\mathbf{y} - \bar{y}\|^{2}} = 1 - \frac{\mathsf{RSS}}{\mathsf{TSS}}$$

where we use the fact:

$$\|\mathbf{y} - \bar{y}\|^2 = \|\hat{\mathbf{y}} - \bar{y}\|^2 + \|\mathbf{r}\|^2.$$



Goodness of Fit: R-square

We measure how well the model fits the data via \mathbb{R}^2 (fraction of variance explained)

$$R^{2} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}} = \frac{\|\hat{\mathbf{y}} - \bar{y}\|^{2}}{\|\mathbf{y} - \bar{y}\|^{2}}$$
$$= \frac{\|\mathbf{y} - \bar{y}\|^{2} - \|\mathbf{r}\|^{2}}{\|\mathbf{y} - \bar{y}\|^{2}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

where we use the fact:

$$\|\mathbf{y} - \bar{y}\|^2 = \|\hat{\mathbf{y}} - \bar{y}\|^2 + \|\mathbf{r}\|^2.$$

$$0 \le R^2 \le 1$$
, $R^2 = \left[\mathsf{Corr}(\mathbf{y}, \hat{\mathbf{y}}) \right]^2$.

 R^2 invariant of any location and/or scale change of Y. In general, R^2 alone does not tell us much about the effectiveness of the LS model. (Wait till we discuss F-test.)

- A small R² does not imply that the LS model is bad.
- Adding a new predictor, even if it is randomly generated and has nothing to do with Y, will decrease RSS and therefore increase R².

Linear Transformation on X

 X_1 : size of a house in sq. ft. \Longrightarrow \tilde{X}_1 : size of a house in sq. meters.

 X_1 : % of population above age 75;

 X_2 : % of population below age 18;

-

 \tilde{X}_1 : % of population below age 75;

 \tilde{X}_2 : % of population between 18 and 75.

If we scale or shift a predictor, say, $\tilde{x}_{i2}=2\times x_{i2}$ or $(1+x_{i2})$, how would this affect the LS fit?

- $ightharpoonup \hat{\mathbf{y}}$, \mathbf{r} , and R^2 stay the same;

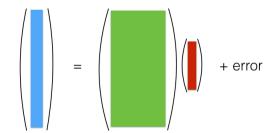
The statements hold true, if we apply any linear transformation on the p predictors, i.e., the new design matrix $\tilde{\mathbf{X}} = \mathbf{X}_{n \times (p+1)} A_{(p+1) \times (p+1)}$, as long as the transformation does not change the rank of \mathbf{X} .

Rank Deficiency

When deriving $\hat{\boldsymbol{\beta}} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{y}$, we assume the rank of \mathbf{X} is (p+1), so $(\mathbf{X}^t \mathbf{X})^{-1}$ exists. What if $\operatorname{rank}(\mathbf{X}) < p+1$?

 $rank(\mathbf{X}) < p+1$: at least one column of \mathbf{X} is redundant, i.e., it can be reproduced by linear combinations of the other columns

- \blacktriangleright X_1 : size in sq. ft.; X_2 : size in sq. meters;
- ▶ X₁: % of population above age 75;
 - X_2 : % of population below age 18;
 - X_3 : % of population below between 18 and 75.



Rank Deficiency

- ► Rank deficiency is not a serious issue: the linear subspace C(X), spanned by the columns of X, is well-defined and therefore ŷ is well-defined and can be computed.
- ▶ Due to rank deficiency, $\hat{\beta}$ is not unique.

$$\mathbf{X}_{n\times 2} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ & \cdot & \cdot \\ 1 & 2 \end{pmatrix}$$

Rank Deficiency

- ► Rank deficiency is not a serious issue: the linear subspace C(X), spanned by the columns of X, is well-defined and therefore ŷ is well-defined and can be computed.
- ▶ Due to rank deficiency, $\hat{\beta}$ is not unique.
- ► In R, LS coefficients = NA means rank deficiency. You can still use the returned model to do prediction.

$$\mathbf{X}_{n imes 2} = \left(egin{array}{ccc} 1 & 2 \\ 1 & 2 \\ & \cdot & \cdot \\ 1 & 2 \end{array}
ight)$$