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Vectors
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Let M be a collection of vectors from R™. M is a linear subspace if M is closed under linear
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Linear Subspace

Let M be a collection of vectors from R™. M is a linear subspace if M is closed under linear

combinations.

» You can image a linear subspace as a bag of vectors. For
any two vectors in of that bag (u, v), their linear
combinations (e.g., u — 2v), are also in the bag.

» The two vectors could be the same (i.e., you are allowed
to create copies of vectors in that bag). So 0 =u—u s
in any linear subspace (i.e., any linear subspace should
pass the origin).



Examples of Linear Subspaces
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Column Space C(X)

Columns of X form a linear subspace in R™,
denoted by C'(X), which consists of vectors
that can be written as linear combinations of

columns of X, i.e., = + error

C(X)={Xp, peR"}.



The Geometric Interpretation of LS

Recall that the LS optimization
min y - X5,

which is equivalent to finding a vector v from

the subspace C'(X) that minimizes ||y — v/||*.
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The Geometric Interpretation of LS

Recall that the LS optimization

min ly — X5

X2
which is equivalent to finding a vector v from
the subspace C'(X) that minimizes ||y — v/||*.
X1
Intuitively we know what the optimal v is: it's The essence of LS: decompose the data vector
the projection of y onto the space C(X). y into two orthogonal components,

Ynxl = ¥Ynx1 + TInxi-



Goodness of Fit: R-square

We measure how well the model fits the data

via R? (fraction of variance explained)
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where we use the fact:

ly — 911> = Iy — gl + [|Ir]12.
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Goodness of Fit: R-square

We measure how well the model fits the data

via R? (fraction of variance explained)
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where we use the fact:

ly — gl1> = Iy — glI*> + [|z[|*

0<R?<1, R?=[Cor(y,y)]>

R2 invariant of any location and/or scale change of Y.
In general, R? alone does not tell us much about the
effectiveness of the LS model. (Wait till we discuss

F-test.)

» A small R? does not imply that the LS model is
bad.

» Adding a new predictor, even if it is randomly
generated and has nothing to do with Y, will

decrease RSS and therefore increase R2.



Linear Transformation on X

X1
X1

X1
Xo:
—
Xy

Xo: % of population between 18 and 75.

size of a house in sq. ft. =—

size of a house in sq. meters.

% of population above age 75;

% of population below age 18;

% of population below age 75;

If we scale or shift a predictor, say, Z;o = 2 X x;5 or
(14 242), how would this affect the LS fit?
» v, r, and R? stay the same;

> B would be different.

The statements hold true, if we apply any linear
transformation on the p predictors, i.e., the new design
matrix X = Xonx (p+1) A(p+1)x (p+1) s long as the

transformation does not change the rank of X.



Rank Deficiency

When deriving 3 = (X!X)~!X'y, we assume the rank of X is (p + 1), so (X'X)~! exists.
What if rank(X) < p+ 1?7

rank(X) < p + 1: at least one column of X is redundant, i.e., it can be reproduced by linear

combinations of the other columns.

> Xi: size in sq. ft.; X2: size in sq. meters;

> X;: % of population above age 75; — + error
Xo: % of population below age 18;

X3: % of population below between 18 and 75.




Rank Deficiency

» Rank deficiency is not a serious issue: the linear subspace
C(X), spanned by the columns of X, is well-defined and

therefore y is well-defined and can be computed.

» Due to rank deficiency, B is not unique.



Rank Deficiency

» Rank deficiency is not a serious issue: the linear subspace
C(X), spanned by the columns of X, is well-defined and
therefore y is well-defined and can be computed.

» Due to rank deficiency, B is not unique.

» In R, LS coefficients = NA means rank deficiency. You can

still use the returned model to do prediction.



