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FIGURE 3.1. Linear least squares fitting with
X ∈ IR2. We seek the linear function of X that mini-
mizes the sum of squared residuals from Y .
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Vectors
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 ∈ Rn

Vector = Point

A point ∈ Rn corresponds to a vector

starting from the origin and pointing to

that point.
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Linear Subspace

Let M be a collection of vectors from Rn. M is a linear subspace if M is closed under linear

combinations.

I You can image a linear subspace as a bag of vectors. For

any two vectors in of that bag (u, v), their linear

combinations (e.g., u− 2v), are also in the bag.

I The two vectors could be the same (i.e., you are allowed

to create copies of vectors in that bag). So 0 = u− u is

in any linear subspace (i.e., any linear subspace should

pass the origin).
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Examples of Linear Subspaces



Column Space C(X)

Columns of X form a linear subspace in Rn,

denoted by C(X), which consists of vectors

that can be written as linear combinations of

columns of X, i.e.,

C(X) = {Xβ, β ∈ Rp+1}.



The Geometric Interpretation of LS

Recall that the LS optimization

min
β
‖y −Xβ‖2,

which is equivalent to finding a vector v from

the subspace C(X) that minimizes ‖y − v‖2.

Intuitively we know what the optimal v is: it’s

the projection of y onto the space C(X).
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FIGURE 3.2. The N-dimensional geometry of least
squares regression with two predictors. The outcome
vector y is orthogonally projected onto the hyperplane
spanned by the input vectors x1 and x2. The projection
ŷ represents the vector of the least squares predictions

The essence of LS: decompose the data vector

y into two orthogonal components,

yn×1 = ŷn×1 + rn×1.
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ŷ represents the vector of the least squares predictions

The essence of LS: decompose the data vector

y into two orthogonal components,
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Goodness of Fit: R-square

We measure how well the model fits the data

via R2 (fraction of variance explained)

R2 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

=
‖ŷ − ȳ‖2

‖y − ȳ‖2

=
‖y − ȳ‖2 − ‖r‖2

‖y − ȳ‖2
= 1− RSS

TSS

where we use the fact:

‖y − ȳ‖2 = ‖ŷ − ȳ‖2 + ‖r‖2.
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= 1− RSS

TSS

where we use the fact:

‖y − ȳ‖2 = ‖ŷ − ȳ‖2 + ‖r‖2.

0 ≤ R2 ≤ 1, R2 =
[
Corr(y, ŷ)

]2
.

R2 invariant of any location and/or scale change of Y .

In general, R2 alone does not tell us much about the

effectiveness of the LS model. (Wait till we discuss

F -test.)

I A small R2 does not imply that the LS model is

bad.

I Adding a new predictor, even if it is randomly

generated and has nothing to do with Y , will

decrease RSS and therefore increase R2.



Linear Transformation on X

X1: size of a house in sq. ft. =⇒

X̃1: size of a house in sq. meters.

X1: % of population above age 75;

X2: % of population below age 18;

=⇒

X̃1: % of population below age 75;

X̃2: % of population between 18 and 75.

If we scale or shift a predictor, say, x̃i2 = 2× xi2 or

(1 + xi2), how would this affect the LS fit?

I ŷ, r, and R2 stay the same;

I β̂ would be different.

The statements hold true, if we apply any linear

transformation on the p predictors, i.e., the new design

matrix X̃ = Xn×(p+1)A(p+1)×(p+1), as long as the

transformation does not change the rank of X.



Rank Deficiency

When deriving β̂ = (XtX)−1Xty, we assume the rank of X is (p + 1), so (XtX)−1 exists.

What if rank(X) < p + 1?

rank(X) < p + 1: at least one column of X is redundant, i.e., it can be reproduced by linear

combinations of the other columns.

I X1: size in sq. ft.; X2: size in sq. meters;

I X1: % of population above age 75;

X2: % of population below age 18;

X3: % of population below between 18 and 75.



Rank Deficiency

I Rank deficiency is not a serious issue: the linear subspace

C(X), spanned by the columns of X, is well-defined and

therefore ŷ is well-defined and can be computed.

I Due to rank deficiency, β̂ is not unique.

I In R, LS coefficients = NA means rank deficiency. You can

still use the returned model to do prediction.

Xn×2 =


1 2

1 2

. .

1 2
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