Overview

Lasso

— Duality between constrained optimization & Lagrangian
— What'’s the optimal lambda value”
— Should we standardize the features”

Ridge

— Understand the shrinkage effect through PC transformation

Other Penalty Choices
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Equivalent Formulation

min f(x)

T Lagrange multiplier formulation

subj to g(x) < b Q(x, A) = f(z) + A(g(z) — b)
KKT Conditions

f'(z) + Ag'(z) =0
g(x) =b<0

A >0

Ag(z) —b) =0



Optimal Lambda?

In Lasso, lambda plays the role of a threshold value. What's the optimal
threshold value that can separate signal and noise?
Next let’s consider a simple normal mean problem.

X1,Xo,..., X, iid ~ Ny(0,x1,0°L,)

_ 0'2
— X ~ N, (epxl, ;Ip)

Magnitude of X-bar for each dimension
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How to Choose Lambda®?

Suppose all dims are noise

Bound for normal tail probability

Want this quantity go to zero




How to Choose Lambda®?

Suppose all dims are noise

Optimal threshold depends on
1) # of noise features
2) variance




Standardization

Previously, we had the following derivation assuming X is
orthonormal, but the result shown below holds true for any X.
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BERP



Standardization

Previously, we had the following derivation assuming X is
orthonormal, but the result shown below holds true for any X.

ly-XB|? = |y-XB +X3 —Xg|?
~LS. . . ,
= |y —XB"|*+ || XBs — XB|°
- . ' Now, we can think our
a0 = arg min —XBI% + A ) AR
o S BeRs (lly Bl lﬂl) data is just the LS

estimate of beta.

. A LS :
= arg min (X8 - X8| + N8)

= arg min [(8” - B)'X7X(8" - B) + 4]

BERP

When X is orthogonal with each column of

~ LS 0 2,wiws_1) | thesame variance (i.e., we have scaled the
5p><1 ~ N(ﬁ , 07 (X"X) ) columns), then we are back to the previous
normal mean case.
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For a general design matrix X, (X/AtX) is no
longer diagonal: the loss involves cross

~ LS
prXl ~ N(ﬁO, JQ(XtX)_l) products of diff dims, and there is no one-

fits-all threshold value.




Standardization

1. We’center»Y andX ‘so themterceptlsnotpe'nal*lzed'"' )

2. We scale X, so at least when the correlation among features is low, a
single lambda value will work well. But if features are already in the

same unit (gene expression level, all categorical variables), then one
can choose not to center/scale

3. For general X, it's hard to tell which one, standardization or no
standardization, will have a better performance

Send standardized data to the algorithm, and obtain

(o)




Lasso + Bootstrap

Large number of noise features will push lambda to be large, so small

signals will be killed and also a large bias is introduced to non-zero
coefficients (compare Boston?2 vs Boston3)

Signal

Noise

A heuristic approach to removing spurious variables based on
reproducibility or consistency: spurious variables seem highly relevant
only on this particular training data, so if we run Lasso repeatedly on

bootstrap samples, then spurious variables shouldn't be repeatedly
selected by Lasso.



X2

Ridge

y—-XB8=y—-UDV3=y-Fa.

there is a one-to-one correspondence between 3, ., and «, . and

18]I = llex]|*. So

min |ly — XA + A||B]* <= min ||y — Fa||* + Alle®.

BERP

Smallest Principal
Component
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4
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F: the new design matrix after rotation.
Columns of F are projections of the data onto
subsequent PC directions

Even if we standardize X, columns of F still
have different variances. So although there is
one shrinkage parameter lambda, the
shrinkage factors for different columns of F
are different: alpha_j's are shrunk more and
more as | increases

This implies Ridge trusts the first couple of PCs more. Does it
make sense to do so? (compare Boston?2 vs Boston3)



L2 Penalty

The meaning of “sparsity” changes when
the penalty function changes.

AIC/BIC: sparsity = small number of non-  [Natural, but computationally
zero coefficients (L_O norm of beta) difficult (known to be NP hard)

Lasso: sparsity = small L_1 norm

Ridge: sparsity = small L_2 norm
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L2 Penalty

The meaning of “sparsity” changes when
the penalty function changes.

AIC/BIC: sparsity = small number of non- Under mild conditions
zero coefficients (L_O norm of beta) 4P |these two types of

sparsity are the same.

Lasso: sparsity = small L_1 norm
Ridge: sparsity = small L_2 norm

For correlated features, LO and L1 tend to pick just the most relevant one,
but L2 tends to spread the weights over correlated features.

Suppose both X1 and X2 indirectly measure some true predictor variable
(e.g., housing price and annual vacation cost as indirect measures of
annual income of a household), then it makes sense to use weighted
average of these two variables instead of just keeping one in the model.




Other Penalty Choices: Elastic Net

Purpose: Correlated
features tend to be
selected together.
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Other Penalty Choices: Group Lasso

Pen(3) = \/ﬁ% + 55 + | B3]

L2

beta_1 and beta_2 are in
the same group, and need
be in-or-out together

Ball: slice over z-coordinate
Diamond: slice over x- or y-
COOrdlnate Qw) = |[wyy 2y]l2 + |wal Qlﬂ‘wg» .—II‘u:'I.» b lwy| + |wal.

(¢) £1/f2-norm ball: (d) £ f€2-norm ball:

Group Lasso Sparse Group Lasso



