
Variable Selection

• Subset selection with AIC/BIC

• Regularization methods: Ridge and Lasso

• Case study: Boston Housing Data.
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Introduction to Variable Selection

In modern statistical applications nowadays, we have many potential

predictors, i.e., p is large and we could even have p� n.

In some applications, the key question we need to answer is to identify a subset

of the predictors that are most relevant to Y .

If our goal is simply to do well on prediction/estimation (i.e., we don’t care

whether the predictors employed by our linear model are really relevant to Y or

not), then should we care about variable selection? To understand this, let’s

examine the training and the test errors.
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Test vs Training Error

• Training data (xi, yi)
n
i=1. Fit a linear model on the training data and define

Train Err = ‖y −Xβ̂‖2,

where β̂ ∈ Rp is the LS estimate of the regression parameter.

• Test data (xi, y
∗
i )ni=1 is an independent data set collected at the same

location xi’s. Define

Test Err = ‖y∗ −Xβ̂‖2.

• Note that the two errors are random; In the two equations above, terms

are colored differently representing difference sources of randomness. Next

we decompose the expectation of the two errors into three components.
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We can show that

E[Train Err] = (Unavoidable Err)− pσ2 + Bias

E[Test Err] = (Unavoidable Err) + pσ2 + Bias

where

• Unavoidable Err: we usually model Y = f∗(X) + err, so even if we know

f∗, we still cannot predict Y perfectly.

• Bias: we could encounter this error if the true function f∗ is not linear or

the current model misses some relevant variables.

• Notice the sign of the term pσ2, which increases the “Test Err” (on

average) while decreases the “Training Err”. So even if our goal is purely

prediction, it’s not true that the more the predictors the better the

prediction. We should benefit from removing some irrelevant variables.
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Subset Selection: Which variables to keep and which to drop?

Why it’s a difficult task? Can we just select variables based on their p-values in

the R output, e.g., drop all variables which are not significant at 5%?
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Subset Selection: Best Subset

1. score each model (model = subset of variables)

2. design a search algorithm to find the optimal one.

Model selection criteria/scores for linear regression often take the following

form

Goodness-of-fit + Complexity-penalty.

The 1st term is an increasing function of RSS, and the 2nd term an increasing

function of p (the number of non-intercept variables).a

aIntercept is always included. You can count the intercept in p or not; It doesn’t make

any difference. From now on, p = number of non-intercept variables.
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Popular choices of scores:

• Mallow’s Cp: RSS + 2σ̂2
full × p a

• AIC: −2loglik + 2p b

• BIC: −2loglik + (log n)p

Note that when n is large, adding an additional predictor costs a lot more in

BIC than AIC. So AIC tends to pick a bigger model than BIC. Cp performs

similar to AIC.
aσ̂2 is estimated from the full model (i.e., the model with all the predictors).
bIn the context of linear regression with normal errors, we can replace −2loglik by

log RSS.

7



Mallow’s Cp

• Recall the decomposition of the training and test error.

E[Train Err] = (Unavoidable Err)− pσ2 + Bias

E[Test Err] = (Unavoidable Err) + pσ2 + Bias

• So Test Err ≈ RSS + 2pσ2, which is known as Mallow’s Cp.
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Search Algorithms

• Level-wise search algorithm, which returns the global optimal solution, but

only feasible for less than 40 variables.

Note that the penalty is the same for models with the same size. So

1. first find the model with the smallest RSS among all models of size m,

where m = 1, 2, . . . , p.

2. Then evaluate the score on the p candidate models and report the

optimal one.
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• Greedy algorithms: fast, but only return a local optimal solution (which

might be good enough in practice).

– Backward: start with the full model and sequentially delete predictors

until the score does not improve.

– Forward: start with the null model and sequentially add predictors until

the score does not improve.

– Stepwise: consider both deleting and adding one predictor at each

stage.

What if p > n?
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Variable Screening

• When p� n, stepwise (starting with the full model) cannot be used.

Then we can apply the following screening procedure to pick a model as

the starting point for stepwise.

• A simple screening procedure: rank the p predictors by the absolute value

of their (marginal) correlation with Y ; keep the top K predictors (e.g.,

K = n/3).

• Such a simple screening procedure is likely to miss some important

variables, which hopefully could be added back by the stepwise procedure.
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Linear Regression with Regularization

• Ridge regression

β̂ = argminβ‖y −Xβ‖2 + λ‖β‖2.

• Lasso

β̂ = argminβ‖y −Xβ‖2 + λ|β|, (1)

• Subset selection

β̂ = argminβ‖y −Xβ‖2 + λ‖β‖0,

which with a proper choice of λ gives rise to AIC, BIC, or Mallow’s Cp

when σ2 is known or estimated by a plug-in.

• ‖β‖2 =
∑p
j=1 β

2
j , |β| = ∑p

j=1 |βj |, ‖β‖0 =
∑p
j=1 1{βj 6=0}.
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Note that the penalty or regularization terms are not invariant with respect to

any location/scale change of the predictors, so we usually

• center and scale the columns of the design matrix X such that they have

mean zero and unit sample variance, and

• center y, so the intercept is suppressed (why).

Some packages in R (e.g., glmnet) handles the centering and scaling

automatically: they apply the transformation before running the algorithm, and

then transform the obtained coefficients back to the original scale and add

back the intercept.

How to compute the intercept?

Y − ȳ = β̂1(X1 − x̄1) + β̂2(X2 − x̄2) + · · ·+ β̂p(Xp − x̄p).

=⇒ β̂0 = ȳ −
p∑
j=1

β̂jx̄j .
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Ridge Regression

• How to derive the solution β̂
ridge

?

• Understand the shrinkage effect of Ridge.

• Why we want to do shrinkage?

• How to quantify the dimension (or df) of a ridge regression model?

• How to select the tuning parameter λ? (see R page)

14



• In Ridge regression, the criterion we want to minimize is

(y −Xβ)T (y −Xβ) + λβTβ.

• The solution

β̂
ridge

= (XTX + λI)−1XTy.

Later we’ll see that ridge coefficients can be computed efficiently for all λ

using SVD.

• Compared to the OLS estimate β̂
LS

= (XTX)−1XTy, the ridge regression

solution adds a non-negative constant to the diagonal of XTX, so we can

take the inversion even if XTX is not of full rank and it was the initial

motivation for ridge regression (Hoerl and Kennard, 1970).
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Why is ridge regression a shrinkage method? Suppose the design matrix X has

ON a columns, XTX = Ip. Then the ridge estimate/prediction is a shrinkage

version of the LS estimate/prediction.

β̂
LS

= (XTX)−1XTy = XTy

β̂
ridge

= (XTX + λI)−1XTy

=
1

1 + λ
XTy =

1

1 + λ
β̂
LS

ŷLS = Xβ̂
LS

ŷridge = Xβ̂
ridge

=
1

1 + λ
yLS

aOrthonormal (ON): orthogonal with norm one.
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In case the columns of X are not orthogonal, we can reformulate the regression

on an orthogonal version of X, known as the principal components analysis or

SVD. Similarly we can see that the ridge estimate/prediction is a shrinkage

version of the LS estimate/prediction. (You can skip the next 6 slides.)
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Consider a singular value decomposition (SVD) of X:

Xn×p = Un×pDp×pV
T
p×p,

where

• Un×p: columns uj ’s form an ON basis for C(X), UTU = Ip.

• Vp×p: columns vj ’s form an ON basis for Rp with VTV = Ip.

• Dp×p: diagonal matrix with diagonal entries d1 ≥ d2 ≥ · · · ≥ dp ≥ 0 being

the singular values of X.

For ease of exposition we assume n > p and rank(X) = p. Therefore

dp > 0.
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The Geometric interpretation of SVD:

Xn×p = Un×pDp×pV
T
p×p

Map a unit circle in Rp to an ellipse in Rn

Xn×pvjp×1 = Un×pDp×pV
T
p×pvjp×1 = djuj .
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Consider a singular value decomposition (SVD) of X:

Xn×p = Un×pDp×pV
T
p×p,

where

• Un×p: columns uj ’s form an ON basis for C(X), UTU = Ip.

• Vp×p: columns uj ’s form an ON basis for Rp with VTV = Ip.

• Dp×p: diagonal matrix with diagonal entries d1 ≥ d2 ≥ · · · ≥ dp ≥ 0 being

the singular values of X.

For ease of exposition we assume n > p and rank(X) = p. Therefore

dp > 0.

• PCA: write X = FVT where each columns of Fn×p = UD is the

so-called principal components and each column of V is the principal

component directions of X;
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Component
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2

FIGURE 3.9. Principal components of some input
data points. The largest principal component is the
direction that maximizes the variance of the projected
data, and the smallest principal component minimizes
that variance. Ridge regression projects y onto these
components, and then shrinks the coefficients of the
low-variance components more than the high-variance
components.
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Write

y −Xβ = y −UDVβ = y − Fα.

there is a one-to-one correspondence between βp×1 and αp×1 and

‖β‖2 = ‖α‖2. So

min
β∈Rp

‖y −Xβ‖2 + λ‖β‖2 ⇐⇒ min
α∈Rp

‖y − Fα‖2 + λ‖α‖2.

α̂LS = D−1UTy, α̂LS
j =

1

dj
uTj y

α̂ridge = diag
( dj
d2j + λ

)
Uty, α̂ridge

j =
d2j

d2j + λ
α̂LS
j

So the ridge estimate α̂ridge shrinks the LS estimate α̂LS by the factor

d2j/(d
2
j + λ): directions with smaller eigen values get more shrinkage.
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• The LS prediction

Fα̂LS = (UD)D−1UTy = UUTy =

p∑
j=1

(
uTj y

)
uj .

• The ridge prediction

Fα̂ridge = Udiag
( d2j
d2j + λ

)
Uty =

p∑
j=1

d2j
d2j + λ

(uTj y
)
uj

• So the ridge prediction ŷridge shrinks the LS prediction ŷLS by factor

d2j/(d
2
j + λ): directions with smaller eigen values get more shrinkage.
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Why is Shrinkage Appealing?

• Why should we shrink the LS estimate?

• Isn’t unbiasedness a nice property?

• Consider a simple estimation problem: Z1, . . . , Zn iid ∼ N(θ, σ2). What’s

the MSE of Z̄ and what’s the MSE of 1
2 Z̄?

MSE(Z̄) = E(Z̄ − θ)2 =
σ2

n

MSE

(
1

2
Z̄

)
= E(Z̄ − θ)2 =

θ2

4
+

1

4

σ2

n

• Shrinkage may introduce bias but can also reduce variance, which could

lead to an overall smaller MSE.
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Degree-of-Freedom of Ridge Regression

• Can we say the complexity of the ridge regression model, which returns a

p-dim coefficient vector β̂
ridge

, is p?

• Although β̂
ridge

is p-dim, the ridge regression doesn’t seem to use the full

strength of the p covariates due to the shrinkage.

• For example, if λ is VERY large, the df of the resulting ridge regression

model should be close to 0. If λ is 0, we are back to a linear regression

model with p covariates.

• So the df of a ridge regression should be some number between 0 and p,

decreasing wrt λ.
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One way to measure the degree of freedom (df) of a method is

df =
1

σ2

n∑
i=1

Cov(yi, ŷi).

Suppose a method returns the n fitted value as ŷ = An×ny where A is an

n-by-n matrix not depending on y (of course, it depends on xi’s). Then

df =
1

σ2

n∑
i=1

Cov(yi, ŷi) =
n∑
i=1

Aii = tr(A).

For example, for a linear regression model with p coefficients, we all agree that

the degree of freedom is p. If using the formula above we have

df = tr(H) = p, ŷLS = Hy

which also gives us df = p.
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For ridge regression, we have ŷridge = Sλy, where

Sλ = X(XTX + λI)−1XT =

p∑
j=1

d2j
d2j + λ

uiu
T
i .

We can define the effective df of ridge regression to be

df(λ) = tr(Sλ) =

p∑
j=1

d2j
d2j + λ

.

When the tuning parameter λ = 0 (i.e, no regularization), df(λ) = p; when λ

goes to ∞, df(λ) goes to 0.

Different from other variable selection methods, the df for ridge regression can

vary continuously from 0 to p.
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LASSO

• Start with the simple case in which X is orthogonal.

– How to derive the solution β̂
lasso

?

– Understand the selection/shrinkage effect of Lasso?

– What’s the difference between Lasso and Ridge?

• Coordinate Decent for general X (leave the computation to R).

• What if p > n?

• How to select the tuning parameter λ? (see R page)
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The Lasso solution is define to be

β̂lasso = arg min
β∈Rp

(
‖y −Xβ‖2 + λ|β|

)
.

Suppose Xn×p is orthogonal, i.e., XTX = Ip. Then

‖y −Xβ‖2 = ‖y−Xβ̂
LS

+ Xβ̂
LS −Xβ‖2

= ‖y −Xβ̂
LS‖2 + ‖Xβ̂LS −Xβ‖2 (2)

where the cross-product term,

2(y −Xβ̂
LS

)T (Xβ̂
LS −Xβ) = 2rT (Xβ̂

LS −Xβ) = 0,

since the n-dim vector in red (which is a linear combination of columns of X,

no matter what value β takes) is in C(X), therefore orthogonal to the residual

vector r. Also note that the 1st term in (2) is not a function of β. Therefore
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β̂lasso = arg min
β∈Rp

(
‖y −Xβ‖2 + λ|β|

)
= arg min

β∈Rp

(
‖Xβ̂

LS −Xβ‖2 + λ|β|
)

= arg min
β∈Rp

[
(β̂

LS − β)TXTX(β̂
LS − β) + λ|β|

]
= arg min

β∈Rp

[
(β̂

LS − β)T (β̂
LS − β) + λ|β|

]
= arg min

β1,...,βp

p∑
j=1

[
(βj − β̂LS

j )2 + λ|βj |
]
.

So we can solve the optimal βj for each of j = 1, . . . , p separately by solving

the following generic problem:

arg min
x

(x− a)2 + λ|x|, λ > 0.
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How to solve a one-dim Lasso?

Define f(x) = (x− a)2 + λ|x| where a ∈ R1 is a number and λ > 0. How to

find x∗ that minimizes f(x)?

The solution x∗ should satisfy the following equation

0 =
∂

∂x
(x∗ − a)2 + λ

∂

∂x
|x∗| = 2(x∗ − a) + λz∗

where z∗ is the sub-gradient of the absolute value function evaluated at x∗,

which equals to sign(x∗) if x∗ 6= 0, and any number in [−1, 1] if x∗ = 0.
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So the minimizer of f(x) = (x− a)2 + λ|x| is given by

x∗ = Sλ/2(a) = sign(a)(|a| − λ/2)+ =


a− λ/2, if a > λ/2;

0, if |a| ≤ λ/2;

a+ λ/2, if a < −λ/2;

Sλ/2(·) is often referred to as the soft-thresholding operator.
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When the design matrix X is orthogonal, the lasso solution is given by

β̂lasso
j =

 sign(β̂LS
j )(|β̂LS

j | − λ/2) if |β̂LS
j | > λ/2

0 if |β̂LS
j | ≤ λ/2.

A large λ will cause some of the coefficients to be exactly zero. So lasso does

both “variable (subset) selection” and (soft) “shrinkage.”
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Lasso vs Ridge

β̂
lasso

= argminβ‖y −Xβ‖2

subject to

p∑
i=1

|βi| ≤ s.

β̂
ridge

= argminβ‖y −Xβ‖2

subject to

p∑
i=1

β2
i ≤ s.

• Contour of the optimization function: Ellipsoid;

• Lasso constraint: Diamond.

• Ridge constraint: Sphere.
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β̂ β̂2
. .β

1

β 2

β1 β

FIGURE 3.11. Estimation picture for the lasso (left)
and ridge regression (right). Shown are contours of the
error and constraint functions. The solid blue areas are
the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2,

respectively, while the red ellipses are the contours of
the least squares error function.
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3.4 Shrinkage Methods 71

TABLE 3.4. Estimators of βj in the case of orthonormal columns of X. M and λ
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (±1), and x+ denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45◦ line in gray shows the unrestricted estimate
for reference.

Estimator Formula

Best subset (size M) β̂j · I[rank(|β̂j | ≤ M)

Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0) (0,0) (0,0)

|β̂(M)|

λ

Best Subset Ridge Lasso

β̂ β^2
. .β

1

β 2

β1 β

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.
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Coordinate Descent Algorithm

For general X, Lasso can be solved via coordinate descent. At each iteration,

repeatedly solve a one-dimensional Lasso problem for βj while holding all other

(p− 1) coefficients β̂k (k 6= j) at their current values:

min
βj

n∑
i=1

(yi −
∑
k 6=j

xikβ̂k − xijβj)2 + λ
∑
k 6=j
|β̂k|+ λ|βj |.

=⇒ min
βj

n∑
i=1

(ri − xijβj)2 + λ|βj |.

Why does this algorithm work? – Tseng (2001)
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Lasso with p > n

• When X is of full rank, the Lasso solution, the minimizer of a convex

function over a convex set, is unique since the 1st term is a strictly convex

function.

• When p > n or when X is not of full rank, the 1st term is no longer

strictly convex. Then β̂
lasso

may be

– unique if XS is of full rank where S is selected variable set, or

– not unique, however Xβ̂
lasso

and |β̂lasso| are still unique.

• For more discussion on the uniqueness of Lasso, check this paper.
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