
STAT542 Appendix for Subset Selection (Week 2) F. Liang

In-sample prediction and Mallow’s Cp

Consider a linear regression model with p predictors (let’s ignore the intercept in this note).

• Index all possible variable subsets by a p-dimensional binary vector (totally 2p subsets

or models):

γ = (γ1, . . . , γp)
t ∈ {0, 1}p.

Especially, γ = (1, 1, . . . , 1) denotes the biggest (full) model that includes all the

predictors, and γ = (0, 0, · · · , 0) denotes the smallest (null) model that does not

include any predictors.

• For a variable set γ, define pγ =
∑

j γj to denote the number of variables included in

this set, and use Xγ and β̂γ to denote the corresponding n × pγ design matrix and

pγ-dim LS regression parameter, respectively.

In-sample prediction

The so-called in-sample prediction error measures prediction errors at the n sample points

xi’s. For a model γ, the error is defined to be

R(γ) = E‖y∗ −Xγβ̂γ‖2, (1)

where

β̂γ = (XT
γXγ)−1XT

γy, Xγβ̂γ = Hγy,

and y∗ is a set of imaginary, new data points observed at (x1, . . . ,xn) which are independent

of the training data y.

The n-by-n matrix Hγ = Xγ(XT
γXγ)−1XT

γ is known as the projection matrix or hat

matrix. It is symmetric and idempotent with tr(Hγ) = pγ .

The expectation in (1) is taken with respect to the true distribution over y and y∗. Here

is our assumption on the true data generating process:

yn×1, y
∗
n×1 i.i.d. ∼ Nn

(
µ, σ2In

)
. (2)

Or equivalently, assume

y = µ + e,

y∗ = µ + e∗

en×1, e
∗
n×1 i.i.d. ∼ Nn

(
0, σ2In

)
.

Note that 1) we do not model the randomness of the X features and the design matrix X is

assumed to be given (the usual setup in statistical analysis for linear models); 2) we do not
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need to assume the mean vector µ can be expressed as a linear combination of the design

matrix X, in other words, whether the true model is a linear model or not does not affect

our analysis.

Next we decompose the prediction error into three components.

R(γ) = E‖y∗ −Xγβ̂γ‖2

= E‖(y∗ − µ + µ−Xγβγ + Xγβγ −Xγβ̂γ‖2

= E‖y∗ − µ‖2 + ‖µ−Xγβγ‖2 + E‖Xγβγ −Xγβ̂γ‖2

= I + II + III.

(3)

The symbol βγ = (Xt
γXγ)−1Xt

γµ is defined to be the best choice of LS coefficients for

model γ if we knew the true mean vector µ. It is easy to show that Eβ̂γ = βγ .

Note that all the cross-product terms are equal to zero:

E(y∗ − µ)t(µ−Xγβγ) = (µ−Xγβγ)t E(y∗ − µ) = (µ−Xγβγ)t0 = 0.

E(µ−Xγβγ)t(Xγβγ −Xγβ̂γ) = (µ−Xγβγ)t E(Xγβγ −Xγβ̂γ) = 0

E
[
(y∗ − µ)t(Xγβγ −Xγβ̂γ)

]
=

[
E(y∗ − µ)

]t[
E(Xγβγ −Xγβ̂γ)

]
= 0

where at the last equality we use the fact that y∗ and β̂γ (depending on y) are uncorrelated.

Let us examine each term in (3)

• The 1st term: the unavoidable error that you would encounter even if you know the

true parameter β:

I = ‖y∗ − µ‖2 = E‖e∗‖2 = nσ2.

• The 2nd term: As we explained before, βγ = (Xt
γXγ)−1Xt

γµ is the solution of the

following LS problem:

min
α∈Rpγ

‖µ−Xγα‖2 = ‖µ−Xγβγ‖2 = II.

The bias will be zero, if µ = Xγβγ (this would happen if the true model is a linear

model and γ contains all the true predictors). The bias will not be zero, e.g., if the

model γ misses any true predictors.

• The 3rd term: the variance of model γ (due to estimating βγ). Note that Xγβγ =

Hγµ and Xγβ̂γ = Hγy. Then

III = E‖Hγµ−Hγy‖2

= E‖Hγ

(
y − µ

)
‖2 = σ2tr(Hγ) = σ2pγ .
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Mallow’s Cp

In practice, we do not know the true model, i.e., we cannot calculate the 2nd term (the

bias). We try to get that information from the RSS from model γ. Next let’s look at the

expected RSSγ , and do a similar decomposition.

E[RSSγ ] = Ey‖y −Xγβ̂γ‖2

= E‖y −Xβ + Xβ −Xγβγ + Xγβγ −Xγβ̂γ‖2

= E‖y − µ‖2 + ‖µ−Xγβγ‖2 + E‖Xγβγ −Xγβ̂γ‖2

−2E(y − µ)T (Xγβ̂γ −Xγβγ). (4)

The first 3 terms are the same as the ones in (3). But now we have a cross-product term

which does not appear in our derivation for prediction. If we replace y by y∗ in (4), since

the new test data y∗ is independent of the training data y, the cross-product term is zero

(they are uncorrelated). But for RSS, the data y is used both for evaluation and for learning

(it’s used twice), so the cross-product term will not disappear.

The cross-product term (the last term) in (4) is equal to

E(y − µ)T (Hγy −Hγµ) = σ2tr(Hγ) = σ2pγ

So

R(γ) ≈ RSS + 2pγσ
2,

which gives rise to Mallow’s Cp: RSSγ + 2pγ σ̂
2, where we replace σ2 by an estimate from

the full model.
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