
Tree-based Models for Regression

• Regression trees

• Regression forests

– randomForest based on bagging

– gbm based on boosting
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Tree-based Models for Regression

• Input vector X = (X1, X2, . . . , Xp) ∈ X

• Response variable Y ∈ R

• Trees are constructed by recursively splitting regions of X into two

sub-regions, beginning with the whole space X .

For simplicity, focus on recursive binary partitions.

• R page: check the fitted regression tree on BostonHousingData

based on two features lon and lat.
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• Notation: node (t), child node (tL, tR), split (var j, value s),

leaf/terminal node.

• Every leaf node (i.e. a rectangle region Rm in X ) is assigned with a

constant for regression tree

f̂(X) =
∑
m

cmI{X ∈ Rm}.
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Advantages of Trees

• Easy to interpret

• Variable selection and interactions between variables are handled

automatically

• Invariant under any monotone transformation of predictors
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How to Build a Tree?

Three elements:

1. Where to split?

2. When to stop?

3. How to predict at each leaf node?
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Prediction at Leaf Nodes

Each leaf node (corresponds to region Rm) contains some samples.

Assign the prediction for a leaf node to be the average (of the response

variable Y ).

f̂(X) =
∑
m

cmI{X ∈ Rm}.

min
cm

n∑
i=1, xi∈Rm

(yi − cm)2,

=⇒ cm = average of yi’s whose xi ∈ Rm
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Where to Split?

• A split is denoted by (j, s): split the data into two parts based on

whether “var j < value s”.

• For each split, define a split criterion Φ(j, s)

– deduction of RSS for regression

• Trees are built in a top-down greedy fashion. Start with the root:

try all possible variables j = 1 : p and all possible split valuesa, and

pick the best split, i.e., the split having the best Φ value. Now,

data are divided into the left node and right node. Repeat this

procedure in each node.
aFor each variable j, sort the n values (from n samples), and choose s to be a

middle point of two adjacent values. So at most (n− 1) possible values for s.
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Goodness of Split Φ(j, s)

For Regression tree, we look at the deduction of RSS if we split samples

at node t into tR and tL:

Φ(j, s) = RSS(t)−
[
RSS(tR) + RSS(tL)

]
,

where

RSS(t) =
∑
xi∈t

(yi − ct)2,

ct = AVE{yi : xi ∈ t}.

Note that Φ(j, s) is always positive if we split the data into two groups

(even randomly), unless the mean of the left node and the one of right

node are the same.
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Issues: Split Categorical Predictors

• For a categorical predictor with m levels, there are 2m−1 − 1

possible partitions of the m labels into two groups.

• However, for regression with square error, the computation

simplifies: order the m levels by their mean values of Y , and then

split the categorical variable as if it were an ordered predictor —

there are only (m− 1) potential splits.
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Issues: Missing Predictor Values

• Discard any observation with missing values −→ serious depletion

of the training set.

• Splitting criteria are evaluated on non-missing observations.

• Once a split (j, s) is determined, what to do with observations

missing Xj?
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– Find surrogate variables that can predict the binary outcome

“Xj < s” and “Xj ≥ s” using a one-split tree.

– Rank those surrogate variables along with the blind rule “go

with majority”.

– Any observation that is missing Xj is then classified with the

first surrogate variable, or if missing that, the second surrogate

variable (or the blind rule) is used, and etc.
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When to Stop?

• A simple one : stop splitting at a node if the gain from any split is

less than some pre-specified threshold.

• BUT, this is short-sighted.

• Another strategy: grow a large tree and then prune it (i.e., cut

some branches).
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Preliminaries for Pruning

First, grow a vary large tree Tmax

1. until all terminal nodes are nearly pure;

2. or when the number of data in each terminal node is less than

certain threshold;

3. or when the tree reaches certain size.

As long as the tree is sufficiently large, the size of the initial tree is not

critical.

Notation : subtree T ′ ≺ T , branch Tt.
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Minimum Complexity-cost Pruning

For any subtree T ≺ Tmax, define the Complexity-cost

Rα(T ) = R(T ) + α|T |, (1)

• R(T ): RSS for regression tree T

• |T |: tree size, i.e., the number of leaf nodes

• α > 0: cost (penalty) of adding a split

Questions: i) How to minimize (1) for a given α? ii) How to choose α?
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Pick the best subtree that minimizes the cost

T (α) = argminT�Tmax
Rα(T ) = argminT�Tmax

[
R(T ) + α|T |

]
T (α) may not be unique.

Define the optimal subtree T ∗(α) to be the smallest one among T (α)’s

(1) Rα(T ∗(α)) = minT�Tmax Rα(T ).

(2) T ∗(α) � any T (α).

T ∗(α) is unique.
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Rα(T ) = R(T ) + α|T |

Some Facts

• For a pair of leaf nodes (tL, tR), there exists α∗, such that

1. for any α ≥ α∗, we would like to collapse them to just node t;

2. for any α < α∗, keep the two leaf nodes.

That is, α∗ is the maximal price we would like to pay to keep that

split.

Next we extend this calculation to compute the maximal price we

would like to pay to keep a branch Tt.
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• For any non-leaf node t, do the following calculation to find out the

maximal price we’d like to pay for keeping the whole branch Tt.

Focus only on samples at node t.

– Cost for keeping branch Tt: Rα(Tt) = R(Tt) + α|Tt|

– Cost for cutting branch Tt: Rα({t}) = R({t}) + α

– Calculate

α∗ =
R({t})−R(Tt)

|Tt| − 1
.

That is, if the given α > α∗, then it is too expensive to keep this

branch and we would like to cut the whole branch and make t a leaf

node.
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Weakest-Link Pruning

The weakest-link pruning algorithm.

• Start with T0 = Tmax and α0 = 0.

• For any non-leaf node t, denote the maximal price we’d like to pay

to keep Tt by α(t).

• α1 = mint α(t). The corresponding (non-terminal node) t1 is called

the weakest link. Cut the branch at t1.

• Next update the maximal price for each non-leaf node (we only

need to recompute the maximal price for nodes that are

parents/grandparents of t1). Find α2 and cut the branch at the 2nd

weakest link. Keep doing this until we get to the root.
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The steps above generate a Solution Path:

Tmax = T0 � T ∗(α1) � T ∗(α2) � · · · � {root node}

0 = α0 < α1 < α2 < · · ·

All possible values of α are grouped into (m+ 1) intervals:

I0 = [0, α1)

I1 = [α1, α2)

...

Im = [αm,∞)

where all α ∈ Ii share the same optimal subtree T ∗(αi).
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Cross-validation

How to Choose α? K-fold Cross-validation (rpart):

1. Fit a big tree Tmax and compute I0, I1, . . . , Im

Set β0 = 0

β1 =
√
α1α2

...

βm−1 =
√
αm−1αm

βm = ∞

where each βj is a ‘typical value’ for its interval Ij .
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2. Divide data into K groups and repeat k = 1, . . . ,K:

• Fit a full model on the data set except the k-th group and

determine the optimal subtrees:

T0 � T ∗(β1) � · · · � T ∗(βm) � {root node}

• Compute the prediction error on the k-th group for each tree

models.

3. Produce the CV plot over different α values and pick the optimal

αmin or α1se.
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