
Nonlinear Regression Models

• Polynomial regression

• Spline regression

• Smoothing splines

• Local regression

• Generalized additive models

1

Polynomial Regression

Assume xi ∈ R a

yi = β0 + β1xi + β2x
2
i · · ·+ βdx

d
i + err.

Create the following new variables: X2 = X2, · · · , Xd = Xd, then treat as a

multiple linear regression model:

y1

y2

· · ·

yn


n×1

=



1 x1 x21 · · · xd1

1 x2 x22 · · · xd2

1 xn x2n · · · xdn


n×(d+1)


β0

· · ·

βd


(d+1)×1

+ err.

aFrom now on, assume x ∈ R is one-dimensional. Extensions to the multi-dimensional

case will be discussed later.

2

• Fit a polynomial model in R: the following two are equivalent

> lm(y ~ X + I(X^2) + I(X^3))

> lm(y ~ poly(X, 3))

where poly(X,3) generates a design matrix with columns being the

orthogonal polynomials that form a basis for polynomials of degree 3.a

• We are more interested in the fitted curve, as well as the prediction at

some new location x∗, and less interested in the estimated coefficients

because coefficients depend on the choice of the basis function. For

example, the two sets of coefficients from the above R commands have

totally different interpretation while the two fitted curves are the same.

aFor the orthogonal polynomials, the j-th basis function involves all the Xk terms for

k = 0, . . . , j.

3

How to draw the fitted curve in R

1. create a grid of values for X (from small to large);

2. obtain the prediction of Y on those X points;

3. connect those points using command “lines”.

4

How to choose d?

• Forward approach: keep adding terms until the coefficient for the newly

added term is not significant.

• Backward approach: start with a large d, keep eliminating the highest

order term if it’s not significant until the highest order term is significant.

• Instead of adding/eliminating by hypothesis testing, you can also run

forward/backward variable selection with AIC/BIC, or Cross-validation.

• Why not search over all possible sub-models?

5

• Question: Suppose we’ve picked d, then should we test whether the other

terms, xj ’s with j = 1, . . . , d− 1, are significant or not?

Usually, we don’t test the significance of the lower-order terms. When we

decide to use a polynomial with degree d, by default, we include all the

lower-order terms in our model.

• Why? For example, suppose the true curve is equal to X2, i.e., if we fit a

polynomial model with bases 1, X,X2, then the optimal model is of size 1.

However we fit the data using “poly(X, 2)”, then the optimal model

would be a full model with coefficients for all basis functions including the

intercept.

6

• Of course, if you have a particular polynomial function in mind, e.g., the

data are collected to test a particular physics formula Y ≈ X2 + constant,

then you should test whether you can drop the intercept and the linear

term.

• Or if experts believe the relationship between Y and X should be

Y ≈ (X − 2)2, then you should check the R output for

lm(Y ~ X + I((X-2)^2))

to test whether you can drop the linear term and the intercept.

• Otherwise, all we care is whether the data can be fitted by a polynomial of

order d where d is the highest order.

7

Global vs Local

• When the data are too wiggly, we have to use a high-order polynomial.

But high-order polynomials are not recommended in practice: results are

not stable, tail-behavior is bad, and difficult to interpret.

• Using polynomial functions, we make a global assumption on the true

mean function E(Y | X = x) = f(x). But global model is less flexible

when data are wiggly. (Recall the discussion on linear regression and

KNN.)

• Instead, we can try some local polynomial regression methods: estimate

the function locally using piece-wise polynomials (splines) or fitting it

locally (local regression).

8

Spline Models

• Introduction to CS and NCS

Piece-wise polynomials: we divide the range of x into several intervals, and

within each interval f(x) is a low-order polynomial, e.g., cubic or

quadratic, but the polynomial coefficients change from interval to interval;

in addition we require overall f(x) is continuous up to certain derivatives.

• Regression splines

• Smoothing splines

9

Cubic Splines

• knots: a < ξ1 < ξ2 < · · · < ξm < b

• A function g defined on [a, b] is a cubic spline w.r.t knots {ξi}mi=1 if:

1) g is a cubic polynomial in each of the m+ 1 intervals,

g(x) = dix
3 + cix

2 + bix+ ai, x ∈ [ξi, ξi+1]

where i = 0 : m, ξ0 = a and ξm+1 = b;

2) g is continuous up to the 2nd derivative: since g is continuous up to

the 2nd derivative for any point inside an interval, it suffices to check

g(0,1,2)(ξ+i) = g(0,1,2)(ξ−i), i = 1 : m.

10

• How many free parameters we need to represent g? m+ 4.

We need 4 parameters (di, ci, bi, ai) for each of the (m+ 1) intervals, but

we also have 3 constraints at each of the m knots, so

4(m+ 1)− 3m = m+ 4.

11

Suppose the knots {ξi}mi=1 are given.

If g1(x) and g2(x) are two cubic splines, so is a1g1(x) + a2g2(x), where a1 and

a2 are two constants.

That is, for a set of given knots, the corresponding cubic splines form a linear

space (of functions) with dim (m+ 4).

12

• A set of basis functions for cubic splines (wrt knots {ξi}mi=1) is given by

h0(x) = 1; h1(x) = x;

h2(x) = x2; h3(x) = x3;

hi+3(x) = (x− ξi)3+, i = 1, 2, . . . ,m.

• That is, any cubic spline f(x) can be uniquely expressed as

f(x) = β0 +
m+3∑
i=1

βjhj(x).

• Of course, there are many other choices of the basis functions. For

example, R uses the B-splines basis functions.

13

Natural Cubic Splines (NCS)

• A cubic spline on [a, b] is a NCS if its second and third derivatives are zero

at a and b.

• That is, a NCS is linear in the two extreme intervals [a, ξ1] and [ξm, b].

Note that the linear function in two extreme intervals are totally

determined by their neighboring intervals.

• The degree of freedom of NCS’s with m knots is m.

• For a curve estimation problem with data (xi, yi)
n
i=1, if we put n knots at

the n data points (assumed to be unique), then we obtain a smooth curve

(using NCS) passing through all y’s.

14

Regression Splines

• A basis expansion approach:

y = β1h1(x) + β2h2(x) + · · ·+ βphp(x) + err,

where p = m+ 4 for regression with cubic splines and p = m for NCS.

• Represent the model on the observed n data points using matrix notation,

β̂ = arg min
β
‖y − Fβ‖2,

15

where

y1

y2

· · ·

yn


n×1

=



h1(x1) h2(x1) · · · hp(x1)

h1(x2) h2(x2) · · · hp(x2)

h1(xn) h2(xn) · · · hp(xn)


n×p


β1

· · ·

βp


p×1

+err

• We can obtain the design matrix F by commands bs or ns in R, and then

call the regression function lm.

16

Understand how R counts the degree-of-feedom.

• To generate a cubic spline basis for a given set of xi’s, you can use the

command bs.

• You can tell R the location of knots.

• Or you can tell R the df. Recall that a cubic spline with m knots has

m+ 4 df, so we need m = df− 4 knots. By default, R puts knots at the

1/(m+ 1), . . . ,m/(m+ 1) quantiles of x1:n.

17

How R counts the df is a little confusing. The df in command bs actually

means the number of columns of the design matrix returned by bs . So if the

intercept is not included in the design matrix (which is the default), then the

df in command bs is equal to the real df minus 1.

So the following three design matrices (the first two are of n× 5 and the last

one is of n× 6) correspond to the same regression model with cubic splines of

df 6.

> bs(x, knots=quantile(x, c(1/3, 2/3)));

> bs(x, df=5);

> bs(x, df=6, intercept=TRUE);

18

• To generate a NCS basis for a given set of xi’s, use the command ns.

• Recall that the linear functions in the two extreme intervals are totally

determined by the other cubic splines, even if no data points are in the two

extreme intervals (i.e., data points are inside the two boundary knots). By

default, R puts the two boundary knots as the min and max of xi’s.

• You can tell R the location of knots, which are the interior knots. Recall

that a NCS with m knots has m df. So the df is equal to the number of

(interior) knots plus 2, where 2 means the two boundary knots.

19

• Or you can tell R the df. If intercept = TRUE, then we need m = df− 2

knots, otherwise we need m = df− 1 knots. Again, by default, R puts

knots at the 1/(m+ 1), . . . ,m/(m+ 1) quantiles of x1:n.

• The following three design matrices (the first two are of n× 3 and the last

one is of n× 4) correspond to the same regression model with NCS of df 4.

> ns(x, knots=quantile(x, c(1/3, 2/3)));

> ns(x, df=3);

> ns(x, df=4, intercept=TRUE);

20

Choice of Knots

• Approach I: ignore the selection of locations – by default, the knots are

located at the quantiles of xi’s, and focus on the selection of number of

knots.

It can be formulated as a variable selection problem (an easier version,

since there are just p models, not 2p)a using AIC/BIC/ m-fold CV

• Approach II: put a large number of knots, and then apply Lasso or Ridge.

aBut note that when number of knots goes from K to K + 1, the underlying function

spaces are not nested since the K knots and the (K + 1) knots could be totally different.

21

Summary: Regression Splines

• Use LS to fit a spline model: Specify the DFa p, and then fit a regression

model with a design matrix of p columns (including the intercept).

• How to do it in R?

• How to select the number/location of knots?

aNot the polynomial degree, but the DF of the spline, related to the number of knots.

22

Smoothing Splines

• In Regression Splines (let’s use NCS), we need to choose the number and

the location of knots.

• What’s a Smoothing Spline? Start with a “naive” solution: put knots at

all the observed data points (x1, . . . , xn):

yn×1 = Fn×nβn×1.

Instead of selecting knots, let’s carry out the following ridge regression (Ω

will be defined later):

min
β

[
‖y − Fβ‖2 + λβtΩβ

]
,

where the tuning parameter λ is often chosen by CV.

• Next we’ll see how smoothing splines are derived from a different aspect.

23

Roughness Penalty Approach

• Let S[a, b] be the space of all “smooth” functions defined on [a, b].

• Among all the functions in S[a, b], look for the minimizer of the following

penalized residual sum of squares

RSSλ(g) =
n∑
i=1

[yi − g(xi)]
2 + λ

∫ b

a

[g′′(x)]2dx,

where λ is a smoothing parameter.

• Theorem. ming RSSλ(g) = ming̃ RSSλ(g̃) where g̃ is a NCS with knots at

the n data points x1, . . . , xn (WLOG, xi 6= xj and x1 < x2 < · · · < xn)

24

(WLOG, assume n ≥ 2.) Let g be a smooth function on [a, b] and g̃ be a NCS

with knots at {xi}ni=1 satisfying

g(xi) = g̃(xi), i = 1 : n. (1)

First, such g̃ exists since NCS with n knots has n dfs, so we can pick the n

coefficients properly such that (1) is satisfied.

25

Next we want to show that∫ b

a

[g′′(x)]2dx ≥
∫ b

a

[g̃′′(x)]2dx (∗)

with equality holds if and only if g̃ ≡ g. Recall that

RSSλ(g) =
n∑
i=1

[yi − g(xi)]
2 + λ

∫ b

a

[g′′(x)]2dx.

So it is easy to conclude that if (∗) holds,

RSSλ(g̃) ≤ RSSλ(g).

That is, for any smooth function g, we can find a NCS g̃ which matches g(xi)

on the n samples and whose penalized residual sum of squares is not worse

than the one of g. So Theorem follows.

26

PROOF : We will use integration by parts and the fact that g̃ is a NCS.

h(x) = g(x)− g̃(x). Note h(xi) = 0 for i = 1, . . . , n.

∫ b

a

[g′′(x)]2dx =

∫ b

a

[
g̃′′(x) + h′′(x)

]2
dx

=

∫ b

a

[g̃′′(x)]2dx+

∫ b

a

[h′′(x)]2dx+ 2

∫ b

a

g̃′′(x)h′′(x)dx︸ ︷︷ ︸
=0∫ b

a

g̃′′(x)h′′(x)dx =

∫ b

a

g̃′′(x)dh′(x) = h′(x)g̃′′(x)
∣∣∣b
a︸ ︷︷ ︸

=0

−
∫ b

a

h′(x)g̃(3)(x)dx

= −
n−1∑
i=1

g̃(3)
(xi + xi+1

2

)∫ xi+1

xi

h′(x)dx

= −
n−1∑
i=1

g̃(3)
(xi + xi+1

2

)
h(x)

∣∣∣xi+1

xi

= 0

27

Smoothing Splines

Write g(x) =
∑n
i=1 βihi(x) where hi’s are basis functions for NCS with knots

at x1, . . . , xn.
n∑
i=1

[yi − g(xi)]
2 = (y − Fβ)t(y − Fβ),

where Fn×n with Fij = hj(xi).∫ b

a

[
g′′(x)

]2
dx =

∫ [∑
i

βih
′′
i (x)

]2
dx

=
∑
i,j

βiβj

∫
h′′i (x)h′′j (x)dx = βtΩβ,

where Ωn×n with Ωij =
∫ b
a
h′′i (x)h′′j (x)dx.

28

So

RSSλ(β) = (y − Fβ)t(y − Fβ) + λβtΩβ,

and the solution is

β̂ = arg min
β

RSSλ(β)

= (FtF + λΩ)−1Fty

ŷ = F(FtF + λΩ)−1Fty

= Sλy

What if we use a different set of basis functions h̃1(x), . . . , h̃n(x)?

29

• Demmler & Reinsch (1975): a basis with double orthogonality property, i.e.

FtF = I, Ω = diag(di),

where di’s are arranged in an increasing order and in addition d2 = d1 = 0

(Why?).

• Using this basis, we have

β̂ = (FtF + λΩ)−1Fty

= (I + λdiag(di))
−1Fty,

i.e.,

β̂i =
1

1 + λdi
β̂
(LS)
i .

30

• Smoother matrix Sλ

ŷ = Fβ̂ = F(FtF + λΩ)−1Fty = Sλy.

• Using D&R basis,

Sλ = Fdiag
(1

1 + λdi

)
Ft.

So columns of F are the eigen-vectors of Sλ, which does not depend on λ.

• Effective df of a smoothing spline:

df(λ) = trSλ =
n∑
i=1

1

1 + λdi
.

• Check the R page to see what the DR basis functions look like.

31

Weighted Spline Models

We can always assume all xi’s are different, otherwise, we just need to fit a

weighted regression model due to the following argument. Suppose the first

two obs have the same x value, i.e.,

(x1, y1), (x2, y2), where x1 = x2.

Then

[
y1 − g(x1)

]2
+
[
y2 − g(x1)

]2
=

2∑
i=1

[
yi −

y1 + y2
2

+
y1 + y2

2
− g(x1)

]2
=

(
y1 −

y1 + y2
2

)2
+
(
y2 −

y1 + y2
2

)2
+2
[y1 + y2

2
− g(x1)

]2
So we can replace the first two obs by one, (x1,

y1+y2
2), and its weight is 2

while the weights for other obs are 1.

32

Choice of λ

• Leave-one-out (LOO) CV (n-fold CV)

LOO-CV(λ) =
1

n

n∑
i=1

[yi − ĝ[−i](xi)]2

=
1

n

n∑
i=1

(
yi − ĝ(xi)

1− Sλ(i, i)

)2

where ĝ[−i] denotes the model learned based on n− 1 samples (i.e., leave

the i-th sample out).

• Generalized CV

GCV(λ) =
1

n

n∑
i=1

(
yi − ĝ(xi)

1− 1
n trSλ

)2

• In R, you tune λ through df(λ) = trSλ =
∑n
i=1

1
1+λdi

.

33

A Simple Formula for LOO-CV

Initially, it seems that we need to repeatedly fit n models when leaving out

each sample. But it turns out that LOO prediction error can be computed

based on the original model (the one that uses all the n samples):

yi − ŷ[−i]i =
yi − ŷi
1− Sii

, (2)

where

• Sii is the (i, i)-th entry of the smoothing matrix S associated with the

original SS (smoothing spline) model (for simplicity we suppress the

subscript λ in Sλ), and

• ŷi denotes the prediction at xi from the original SS model (i.e., the ith

entry of vector Sy).

So LOO-CV is actually much faster to compute than the general m-fold CV.

34

• In addition to smoothing splines, this simple formula (2) is true for many

models, such as multiple linear regression model, polynomial regression

model and ridge regression, where the prediction at the n sample points

can be written as

ŷn×1 = Sn×nyn×1.

Note that S is a matrix computed based on xi’s, not yi’s.

• Sometimes the following GCV is used to approximate LOO-CV (to further

reduce the computation):

1

n

n∑
i=1

(
yi − ŷ[−i]i

)2
=

1

n

∑
i

(
yi − ŷi
1− Sii

)2

≈ 1

n

∑
i

(
yi − ŷi
1−m

)2

where m = 1
n

∑
i Sii is the average of the trace of S. Note that∑

i Sii = trS is basically the df of a linear model (including the intercept)

or the effective df of a ridge regression model.

35

Summary: Smoothing Splines

• Start with a model with the maximum complexity: NCS with knots at n

(unique) x points.

• Fit a Ridge Regression model on the data. If we parameterize the NCS

function space by the DR basis, then the design matrix is orthogonal and

the corresponding coefficient is penalized differently: no penalty for the

two linear basis functions, higher penalties for wigglier basis functions.

• How to do it in R?

• How to select the tuning parameter λ or equivalently the df?

• What if we have collected two obs at the same location x?

36

Local Regression

Recall k-NN for regression

f̂(x) =
1

k

∑
i∈Nk(x)

yi,

which falls into a class of curve estimates known as linear smoothers:

f̂(x) =
n∑
i=1

`i(x)yi,

where our estimate at each x is a weighted average of yi’s with `i(x) being the

weight assigned to the i-th sample and
∑
i `i(x) = 1.

37

In particular,

ŷn×1 =



f̂(x1)

f̂(x2)

...

f̂(xn)


=



`1(x1) `2(x1) · · · `n(x1)

`1(x2) `2(x2) · · · `n(x2)

...
...

...

`1(xn) `2(xn) · · · `n(xn)





y1

y2
...

yn


That is, the fitted value is a lineara transformation of y (note that S does not

depend on y):

ŷ = Sy.

aIt doesn’t mean that f̂(x) is a linear function of x.

38

The class of linear smoothers contains many curve estimators we have learned

so far. We will define the effective df of a linear smoother ŷ = Sy to be tr(S).

The simple formula for LOO-CV holds for ŷ = Sy, that is,

yi − ŷ[−i]i =
yi − ŷi
1− Sii

.

Each linear smoother usually has a smoothing parameter h.

39

Kernel Smoothing

Issues with kNN: fitted curve looks jagged. This is because `i(x) in

f̂(x) =
∑n
i=1 `i(x)yi is not continuous.

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 6

Nearest-Neighbor Kernel

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

O

O

OO

OO
O

O

O
O

O

O
O

O

O

O

O

O

O

O

OOO

O

O

O

O

O

O

O
O

O

O

O
O
O

O

O

O

O

O

O

O

O

O

O

O
O

OO

O

OO

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O O

O

OO

OO

O

OO
O
O

OO

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

OO

O

OO

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O•

x0

f̂(x0)

Epanechnikov Kernel

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

O

O

OO

OO
O

O

O
O

O

O
O

O

O

O

O

O

O

O

OOO

O

O

O

O

O

O

O
O

O

O

O
O
O

O

O

O

O

O

O

O

O

O

O

O
O

OO

O

OO

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O O

O

OO

OO

O

OO
O
O

OO

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O
O
O

O

O

O

O

O

O

O

O

O

O

O
O

OO

O

OO

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O O

O

OO

•

x0

f̂(x0)

FIGURE 6.1. In each panel 100 pairs xi, yi are gen-
erated at random from the blue curve with Gaussian
errors: Y = sin(4X) + ε, X ∼ U [0, 1], ε ∼ N(0, 1/3).
In the left panel the green curve is the result of a
30-nearest-neighbor running-mean smoother. The red

point is the fitted constant f̂(x0), and the red circles
indicate those observations contributing to the fit at x0.
The solid yellow region indicates the weights assigned to
observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel
with (half) window width λ = 0.2.

40

K : R→ R is a kernel function satisfying∫
K(x)dx = 1,

∫
xK(x)dx = 0,

∫
x2K(x)dx <∞.

For example:

Gaussian kernel : K(x) =
1√
2π

exp(−x2/2)

Epanechnikov kernel : K(x) = (3/4)(1− x2), if |x| ≤ 1; 0, otherwise.

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 6

-3 -2 -1 0 1 2 3

0.
0

0.
4

0.
8

Epanechnikov
Tri-cube
Gaussian

K
λ
(x

0
,
x
)

FIGURE 6.2. A comparison of three popular kernels
for local smoothing. Each has been calibrated to inte-
grate to 1. The tri-cube kernel is compact and has two
continuous derivatives at the boundary of its support,
while the Epanechnikov kernel has none. The Gaus-
sian kernel is continuously differentiable, but has infi-
nite support.

41

The local average based on a kernel function K can be written as

f̂(x) =

∑n
i=1K(x−xi

h)yi∑n
j=1K(

x−xj

h)
=

n∑
i=1

`i(x)yi

Choice of kernel: not important

Choice of bandwidth h: crucial

42

Local Regression

Consider a Taylor expansion at x0:

f(xi) ≈ f(x0) + f ′(x0)(xi − x0) + f ′′(x0)(xi − x0)2 + · · ·

yi = f(xi) + err

≈ f(x0) + f ′(x0)(xi − x0) + f ′′(x0)(xi − x0)2 + err

At each location x0, fit a weighted linear or polynomial regression model on

(yi, zi)
n
i=1 where zi = xi − x0, then use the intercept to predict f(x0). This

prediction can still be expressed as a weighted average of yi’s, i.e.,

f̂(x0) =
∑
i `i(x0)yi.

43

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 6

Local Linear Equivalent Kernel at Boundary

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

O

O

O

O

O
O

O

O

O

O

O
O

O
O

O

O
O

O

O

O
O

OOO

O

O

O

O

O

O

O
O

O

O

O

O

O

O
OO

O

O

O

O

O

O

OO

O

OO

O

O

O

O

O

O
O

O

O

O
O

O
O

OO
O

O

O

O

O

OOO
O

O

O

O

OO

OO
O O

O

O
O

O

OO

OO
O
O

O

O

OO

O

O

O

O

O

O

O
O

O

O

O

O

O
O

O
O

O

O
O

O

O

O
O

OOO

•

•••••
•••
•
••
••
••••••••••••• ••••••••••••••••••••••••••••• • ••••••••••••••••••• •••••• • •• ••••••••••••••

x0

f̂(x0)

Local Linear Equivalent Kernel in Interior

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

O

O

O

O

O
O

O

O

O

O

O
O

O
O

O

O
O

O

O

O
O

OOO

O

O

O

O

O

O

O
O

O

O

O

O

O

O
OO

O

O

O

O

O

O

OO

O

OO

O

O

O

O

O

O
O

O

O

O
O

O
O

OO
O

O

O

O

O

OOO
O

O

O

O

OO

OO
O O

O

O
O

O

OO

OO
O
O

O

O

OO

O

O

O

O

O

O

O
O

O

O

O

O

O

O
OO

O

O

O

O

O

O

OO

O

OO

O

O

O

O

O

O
O

O

O

O
O

O
O

OO
O

O

O

O•

•••••••••••••••••••••••••• •••
•••
••••
••••
••••

•••
••••••

•• • ••••••••
•
••
••

•••••• •••••• • •• ••••••••••••••

x0

f̂(x0)

FIGURE 6.4. The green points show the equivalent
kernel li(x0) for local regression. These are the weights

in f̂(x0) =
PN

i=1 li(x0)yi, plotted against their cor-
responding xi. For display purposes, these have been
rescaled, since in fact they sum to 1. Since the yellow
shaded region is the (rescaled) equivalent kernel for the
Nadaraya–Watson local average, we see how local re-
gression automatically modifies the weighting kernel to
correct for biases due to asymmetry in the smoothing
window.

44

LOESS

The value of f̂(x0) is obtained as follows:

1. The αn points, those with |xi − x| smallest, are called the neighborhood

of x0: N (x0).

2. A weighted least-squares linear (or quadratic) regression

f̂(x) = β̂0 + β̂1(x− x0)

is fit in N (x0). That is, choose β̂0 and β̂1 to minimize∑
xi∈N (x0)

wi[yi − β0 − β1(xi − x0)]2

where the weights wi = (1− u3i)3 with

ui =
|xi − x0|

maxN (x0) |xj − x0|
.

45

Generalized Additive Models (GAMs)

• Curve estimation for one-dimension x:

y = f(x) + err

• Additive model for multi-dimensional x = (x1, . . . , xp)
t

y = α1 + f1(x1) + f2(x2) + · · ·+ fp(xp) + err.

• Fitting a GAM: iteratively fit each fi using Smoothing Splines or Loess.

• GAMs in R: mgcv, gam, ...

46

