
Clustering

• Goal: group objects into subsets or clusters, such that objects within each

cluster are more similar to one another than objects assigned to different

clusters.

• Choice of distance measures d(x, z) is crucial. As a metric in

Mathematics, a distance measure d(x, z) satisfiesa:

– d(x, z) ≥ 0

– d(x, z) = 0 if and only if x = z

– d(x, z) = d(z,x)

– d(x,y) ≤ d(x, z) + d(z,y) (triangle inequality)

aIt is okay to use a distance measure that does not satisfy all the properties.
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Dissimilarity Measures

• Euclidean Distances d(x, z)

L2 :
( p∑

j=1

(xj − zj)2
)1/2

L1 :

p∑
j=1

|xj − zj | (Manhattan distance)

L∞ : max
j=1,...,p

|xj − zj | = lim
d→∞

( p∑
j=1

|xj − zj |d
)1/d
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• Non-Euclidean Distances

– Jaccard distance between sets: 1− |A∩B||A∪B|

{A,C,D,E} and {A,D,E} is 1− 3/4.

E.g., can measure the distance between sentences,

- “Cluster analysis arranges similar objects in the same group.”

- “Cluster analysis divides data into groups.”

or distance between movies/restaurants based on their ratings.
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– Hamming distance between two strings (of the same length): number

of positions at which the corresponding symbols are different.

- “Karolin” and “Kathrin” is 3.

- 1011101 and 1001001 is 2.

For binary strings, the hamming distance is the same as L1 distance.

E.g., can measure distance between texts, DNA/Protein sequences
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– Edit distance: number of inserts and deletes to change one string into

another

E.g., x = abcde and y = bcduve is 3.

– Cosine distance: angle between two vectors x and y.

arccos
( xty

‖x‖‖y‖

)

5



Two Types of Inputs for Clustering

1. data matrix, Xn×p, where rows stand for objects/samples and columns

stand for variables/features.

2. dissimilarity matrix, Dn×n, where d(i, j) = d(j, i) measures the difference

between i and j.

We can transform the input from one form to the other:

• X =⇒ D: easy with a given distance measure;

• D =⇒ X: various choices, e.g., multi-dimensional scaling (MDS).
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Classical Multi-dimensional Scaling (cMDS)

Given a pairwise squared `2 distance matrix Dn×n = [dij ], where

dij =
∑p

l=1(xil − xjl)2, can we retrieve the n data points xi’s (up to a

location shift, sign flip, and orthonormal rotation)?

1. Double Centering D to obtain D̃:

d̃ij = −
(
dij − di· − d·j + d··

)
/2,

where di· = i-th row mean, d·j = j-th column mean, d·· = overall mean of

D.

2. SVD/PCA of D̃n×n = Un×pDp×pU
t, then Xn×p = UD1/2.
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Key idea: Double centering D =⇒ D̃ = Xn×pX
t
p×n.

dij = ‖xi − xj‖2 = xt
ixi + xt

jxj − 2xt
ixj

Assume x̄ = 1
n

∑
i xi = 0 and write C = 1

n

∑n
i=1 ‖xi‖2.

di· =
1

n

n∑
j=1

dij = xt
ixi + C

d·j =
1

n

n∑
i=1

dij = C + xt
jxj ,

d·· =
1

n

n∑
i=1

di· = 2C

d̃ij = −(dij − di· − d·j + d··)/2 = −(−2xt
ixj)/2 = xt

ixj
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Instead of using all p dimensions of X from the SVD of D̃, we can just extract

the first k dimensions, so z1, . . . , zn ∈ Rk form a k-dimensional representation

of the data that approximates the pairwise distances given by D. Check R

command cmdscale.

There are some variations of cMDS, check isoMDS for Kruskal’s non-metricand

MDS and sammon for Sammon’s non-linear mapping in R package MASS.
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K-means Clustering

• Input: Xn×p (data matrix) and K (number of clusters)

• K-means clustering algorithm

0. Start with some initial guess for the K cluster centers.

1. For each data point, find the closest cluster center (partition step).

2. Replace each center by the average of data points in its partition

(update centers).

3. Repeat 1 + 2 until convergence.
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• Goal: Partition data into K groups so the within-cluster dissimilarity is

small.

• Dissimilarity measure is the squared Euclidean distance.

• Optimize the following objective function (within cluster sum of squares)

Ω(z1:n,m1:K) =
n∑

i=1

‖xi −mzi‖2 =
K∑

k=1

∑
i:zi=k

‖xi −mk‖2,

where zi ∈ {1, 2, . . . ,K) and mk ∈ Rp.
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K-means converges to a local minimum of Ω by iterating the following two

steps

Step 1 (Update Partition): Given the cluster centers m1, . . . ,mK ,

zi = arg min
k=1:K

‖xi −mk‖2.

Step 2 (Update Centers): Given the partition z1, . . . , zn,

mk = arg min
m

∑
i:zi=k

‖xi −m‖2 = mean of {xi : zi = k}.

12



Some Practical Issues

1. Try many random starting centers and choose the solution with the

smallest within-cluster SS. Check the option nstart in kmeans in R.

2. Dimension reduction via PCA or random project.

3. If using other dissimilarity measures, how should we modify the K-means

algorithm? You just need to change Step 2.

4. How to choose K?
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Dimension Reduction for K-means

The computation cost for K-means is O(I · n · p ·K)

I = #iterations, n = #points, p = #features, K = #centers

Apply dimension reduction techniques to reduce p.

• PCA: use the top d directions to form the best approximation of the

pairwise distance on average.

• Random Projection (or Johnson-Lindenstrauss type embedding): generate

a random Gaussian matrix U ∈ Rd×p where d = O(log(n)/ε2), project xi

to zi = Uxi then w.h.p., for any i and j:

(1− ε)‖zi − zj‖2 ≤ ‖xi − xj‖2 ≤ (1 + ε)‖zi − zj‖2.
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K-means with Other Distance Measures

To find a local minimum of

Ω(z1:n,m1:K) =

K∑
k=1

∑
i:zi=k

d(xi,mk),

iterates the following two steps:

Step 1 (Update Partition): zi = arg mink=1:K d(xi,mk)

Step 2 (Update Centers): mk = arg minm

∑
i:zi=k d(xi,m).

E.g., x = (x1, x2) where x2 is a categorical variable taking values {A,B,C},

and

d(x,y) = (0.4) · |x1 − y1|+ (0.6) · I(x2 6= y2).
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How to update centers at Step 2? Suppose cluster 1 contains the first 10

objects. Then

• the 1st dim of m1 is the median of the 1st dim of the 10 objects:

mina

∑10
i=1 |xi1 − a|;

• the 2nd dim of m1 is the most frequent value among {A,B,C}:

mina∈{A,B,C}
∑10

i=1 I(xi2 6= a).

Difficulty with Step 2: what about edit distance? Sometimes, you’ll find that

the computation is easier if we restrict the centers mk to sample points, i.e.,

the centers are representative points from the sample. Further, all we need is

Dn×n and no need for data matrix Xn×p.
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K-medoids Clustering

• Input: Dn×n (pair-wise dissimilarity matrix) and K

• Cluster centers (medoids) are restricted to be data points.

• The center for cluster k,

mk = arg min
xi:zi=k

∑
j:zj=k

dij , (1)

is set to be one of the data points in cluster k such that the sum of its

pairwise distance to all the other points in that cluster is the smallest.
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Partition Around Medoids (PAM)

PAM (Kaufman and Rousseeew, 1990) minimizes the following objective

function

min
z1:n,m1:K

K∑
k=1

∑
i:zi=k

d(xi,mk),

where each mk is one of the data points, by iterating the following two steps:

• Partition zi = arg min1≤k≤K d(xi,mk);

• Update Medoids based on (1).
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In addition, PAM adds a swapping step at the end to avoid local minimal: it

keeps swapping xi ↔ xj that decreases the objective function the most, where

xi ∈ {m1, . . . ,mk}, xj 6= {m1, . . . ,mk},

until convergence.
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How Many Clusters?

In supervised learning, the target is well-defined: predict Y well. But in

unsupervised learning, there is no Y , so it is not clear how to evaluate the

accuracy/effectiveness of an unsupervised procedure such as clustering.

Methods for selecting K:

• Gap statistics

• Silhouettes statistics

• Prediction strength
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Gap Statistics

• Many measures of goodness for clusterings are based on the tightness of

clusters, e.g., the within cluster SS:

SS(K) =

K∑
k=1

∑
zi=k

‖xi −mk‖2.

• Gap statistic (Tibshirani, Walther and Hastie, 2001)

G(K) = E0

[
logSS∗(K)

]
− logSSobs(K)

≈ 1

B

B∑
b=1

logSS∗b (K)− logSSobs(K)

where SSobs(K) is the within cluster SS computed based on the observed

data, and SS∗b (K) is computed based on (fake) data generated from the

reference distribution (which has no clustering structure).
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How to generate data from the reference distribution? Two choices suggested

by Tibshirani et al. (2001).

(a) Generate each feature uniformly over the range of the observed values for

that feature: original data Xn×p, generate reference data z = (z1, . . . , zp)t

by uniformly sampling zj from the range of the j-th column of X.

(b) Generate features from a uniform distribution over the ranges of the

principal components of the data: if Xn×p = UDV t, define

X̃n×p = XV = UD, and then sample features z̃ uniformly over the ranges

of the columns of X̃ as in (a), and then transform back to get the

reference data z = z̃V t.
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One-standard-error (1se) Rule:

Kopt = arg min
K
{K : G(K) ≥ G(K + 1)− sK+1}

where sK = sd0(logSS(K))
√

1 + 1/B.

Starting from K = 1, we would like to pick the first K whose performance is

better than the one of (K + 1), i.e., G(K) > G(K + 1). Since the gap

statistics G(·) are computed based on samples, to take account of the

stochastic uncertainty, we think any value from this interval G(K + 1)± sK+1

can represent the performance of K + 1, which leads to the 1se rule.

23



Silhouettes statistics

• The Silhouette statistic (Rousseeuw, 1987) of the ith obs measures how

well it fits in its own cluster versus how well it fits in its next closest cluster.

• Adapted to K-means, define

a(i) = ‖xi −mk‖2, b(i) = ‖xi −ml‖2,

where i ∈ Ck and Cl is the next-closest cluster to xi. Then its silhouette is

s(i) =
b(i)− a(i)

max{a(i), b(i)}
.
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• 1 ≥ s(i) ≥ −1; For K-means, s(i) > 0, but can be below 0 for other

clustering methods.

• s(i) ≈ 1: object i is well classified;

• s(i) ≈ 0: object i lies intermediate between two clusters;

• s(i) ≈ −1: object i is badly classified.

• The larger the (average) silhouette, the better the cluster.
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• Silhouette Coefficient (SC): Average silhouette widths.

A rule of thumb from Anja et al. “Clustering in an Object-Oriented

Environment”:

– SC > 70%: A strong structure has been found.

– SC > 50%: A reasonable structure has been found.

– SC > 26% : The structure is weak and could be artificial, try

additional methods.

– SC < 26%: No substantial structure has been found.

• We can plot SC(K) over K and pick K that achieves the largest SC.
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Prediction Strength

• Step 0: Divide the data into A and B two sets (training and test).

• Step 1: Cluster the m obs in B into K clusters, C1, . . . , CK of size

m1, . . . ,mK (the truth).

• Step 2: Cluster A into K clusters and use the corresponding clustering

rule to assign the m obs from B into K clusters (the prediction).
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• Can we evaluate the classification accuracy on the m obs in B with the

label being their cluster membership?

– Not appropriate, because of the labelling issue: the meaning of “cluster

1” changes when data change; cluster 1 at Step 1 is not the same as

cluster 1 at Step 2.

• A better choice is to measure the error on the Association (or

co-membership) matrix A: Aij = 1 if i and j are in the same cluster, and

0, otherwise.
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• Step 0: Divide the data into A and B two sets (training and test).

• Step 1: Cluster the m obs in B into K clusters, C1, . . . , CK of size

m1, . . . ,mK (the truth).

• Step 2: Cluster A into K clusters and use the corresponding clustering

rule to assign the m obs from B into K clusters (the prediction).

• Prediction strength (Tibshirani and Walther 2005) measures the worst

performance of predicting pairwise co-membership:

minj∈{1,...,K}
1

nj(nj−1)
∑

i,i′∈Cj
Iii′ , where Iii′ = 1 if i and i′ assigned to

the same group at Step 2.
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Hierarchical Clustering Methods

• Input:

– Pairwise dissimilarity matrix of observations

– Rule to calculate dissimilarity between (disjoint) groups of observations

• Output: a hierarchical clustering result

– n single-point clusters at the lowest level;

– one cluster at the highest level;

– clusters at one level are created by splitting/merging clusters at the

next higher/lower level.
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• Bottom-up clustering starts with all observations separate, and successively

joins together the closest groups of observations until all observations are

in a single group.

• Dissimilarty (or distance) between groups of obs

– Single-linkage (nearest-neighbor)

– Complete-linkage (furthest-neighbor)

– Group average
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• Top-down clustering starts with all observations together, and successively

divide into two groups until all observations separate.

• Hybrid (Chipman and Tibshirani, 2006). Check the hybridHclust

package.
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