
Model-based Clustering

Model-based clustering refers to clustering a set of data points (x1, . . . , xn) by

fitting a mixture model on this data set, where each cluster corresponds to a

component of the mixture model.
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Mixture Models

• Consider a mixture model with K components, whose pdf is given by

f(x) =
K∑
k=1

πkfk(x | θk),

where the mixing weight πk is between 0 and 1 and
∑
k πk = 1, and

fk(· | θk) is a pdf with parameter θk.
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• A random sample from the mixture model above can be generated by the

following two steps:

1. Generate Z from a multinomial distribution with P (Z = k) = πk and

k = 1, 2, . . . ,K.

2. Conditioning on Z = k, generate X from fk, the k-th component.
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A Two Components Gaussian Mixture

Consider a simple case where K = 2, xi ∈ R, and each component is a

Gaussian distribution with mean µk and variance σ2
k, i.e., a one-dimensional

two-component Gaussian mixture model. The pdf is given by

p(x|θ) = πφµ1,σ2
1
(x) + (1− π)φµ2,σ2

2
(x). (1)

where

φµ,σ2(x) =
1√
2πσ2

exp
{
− (x− µ)2

2σ2

}
and θ = (µ1, µ2, σ

2
1 , σ

2
2 , π) denotes all parameters of this mixture model.
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Given n training samples x = (x1, . . . , xn), the log-likelihood is

log p(x|θ) =
n∑
i=1

log
[
πφµ1,σ2

1
(xi) + (1− π)φµ2,σ2

2
(xi)

]
. (2)

The MLE of the parameter θ = (π, µ1, σ
2
1 , µ2, σ

2
2) is defined to be

θ̂MLE = argmax
θ

log p(x|θ),

which is not easy to compute. Why? Log-likelihood of a single normal pdf

takes a derivative friendly form,

log φµ,σ2(x) = −1

2
log σ2 − (x− µ)2

2σ2
+ const.,

but log-likelihood of a weighted summation of normal pdfs does not.
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The calculation is much easier if we knew which component xi belongs to.

Introduce the latent variable Zi = 1 or 2.

Zi ∼ Bern(π)

Xi | Zi = k ∼ N(µk, σ
2
k).

The likelihood of the full data (x, z) is given by

n∏
i=1

[
πφµ1,σ2

1
(xi)

]{zi=1}[
(1− π)φµ2,σ2

2
(xi)

]{zi=2}
.

The log-likelihood is given by∑
i

1{zi=1}
[
log φµ1,σ2

1
(xi) + log π

]
+ 1{zi=2}

[
log φµ2,σ2

2
(xi) + log(1− π)

]
=

∑
i:zi=1

[
log φµ1,σ2

1
(xi) + log π

]
+
∑
i:zi=2

[
log φµ2,σ2

2
(xi) + log(1− π)

]
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The MLE for θ = (µ1:2, σ
2
1:2, π) is given by

µ̂1 =
1

n1

∑
i:zi=1

xi, σ̂2
1 =

1

n1

∑
i:zi=1

(xi − µ̂1)
2,

µ̂2 =
1

n2

∑
i:zi=2

xi, σ̂2
2 =

1

n2

∑
i:zi=2

(xi − µ̂2)
2,

and π̂ = n1/n. Why the MLE of π is n1/n?

n1 log π + (n− n1) log(1− π) ∝ n1
n

log π +
(
1− n1

n

)
log(1− π)

=
n1
n

log
π

n1/n
+ (1− n1

n
) log

(1− π)
1− n1/n

+ C

where C is a constant not depending on π and the sum is the negative KL

distance between two distributions, which is non-positive and is zero only if

π = n1/n.
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Kullback-Leibler Distance

The KL distance between two distributions, p(·) and q(·), is defined to be∫
p(x) log

p(x)

q(x)
dx, or

m∑
j=1

pj log
pj
qj

for continuous and discrete cases, respectively. Note that KL distance is not

symmetric.

Using Jensen’s inequality, we can show that

KL(p‖q) = Ep(X) log
p(X)

q(X)
= Ep(X)

[
−log q(X)

p(X)

]
≥ − log

(
Ep(X)

q(X)

p(X)

)
= 0.

So KL(p‖q) ≥ 0 and = 0 iff p and q are the same distribution (up to a

measure zero set).
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However, we do not observe zi’s. Consider the following iterative scheme: start

with some initial guess of θ, then

a) calculate the corresponding distribution of Zi:

P (Zi = 1 | xi, θ) = γi =
πφµ1,σ2

1
(xi)

πφµ1,σ2
1
(xi) + (1− π)φµ2,σ2

2
(xi)

,

P (Zi = 2 | xi, θ) = 1− γi.
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b) Now, for each point xi, instead of allocating it to component 1 or 2, we

count its γi fraction to component 1 and (1− γi) fraction to component

2, and update θ = (π, µ1, σ
2
1 , µ2, σ

2
2) as follows

µ̂1 =
1

γ+

∑
i

γixi, σ̂2
1 =

1

γ+

∑
i

γi(xi − µ̂1)
2,

µ̂2 =
1

n− γ+

∑
i

(1− γi)xi, σ̂2
2 =

1

n− γ+

∑
i

(1− γi)(xi − µ̂2)
2,

π̂ = γ+/n

We can iterative the two steps until the value of θ gets stabilized. Is the

returned value of θ the MLE that maximizes the marginal likelihood p(x|θ)?
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The EM Algorithm

The Expectation-Maximization (EM) algorithm is an iterative method that

finds the MLE by enlarging the sample with unobserved latent data.

Suppose our observed data is x with log-likelihood log p(x|θ) that depends on

unknown parameter θ. Using latent variable z, the log-likelihood can be

written as

log p(x|θ) = log
∑
z

p(x, z|θ) = log
∑
z

p(z|θ)p(x|z, θ). (3)

Direct maximization of (3) is quite difficult due to the sum inside the logarithm.

In the EM algorithm, we pretend we knew Z, then we can maximize log of the

joint likelihood

log p(x,Z|θ) = log p(Z|θ) + log p(x|Z, θ).
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Each iteration of the EM algorithm involves two steps, the E-step and the

M-step.

• E-step: Let θ0 denote the current value of θ. Find p(Z|x, θ0), the

distribution of the latent variable Z given the data x and θ0, and then

calculate the following expectation

g(θ) = EZ|x,θ0 log p(x,Z|θ)

which is∑
z

p(Z = z|x, θ0) log p(x, z|θ), or

∫
p(z|x, θ0) log p(x, z|θ)dz.

• M-step: Find θ1 that maximizes g(θ).

• Replace θ0 by θ1 and repeat the above E and M steps until convergence.
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Next we show that

g(θ1) ≥ g(θ0) =⇒ p(x|θ1) ≥ p(x|θ0),

that is, each iteration of the EM algorithm increases (or at least doesn’t

decrease) the marginal likelihood p(x|θ). Recall g(θ) = EZ|x,θ0 log p(x,Z|θ).

g(θ1)− g(θ0) = EZ|x,θ0 log
p(x,Z|θ1)
p(x,Z|θ0)

= EZ|x,θ0 log
p(x|θ1)p(Z|x, θ1)
p(x|θ0)p(Z|x, θ0)

= log
p(x|θ1)
p(x|θ0)

− EZ|x,θ0 log
p(Z|x, θ0)
p(Z|x, θ1)

where the 2nd term is the Kullback-Leibler distance between two distributions

which is always non-negative. So

log
p(x|θ1)
p(x|θ0)

= g(θ1)− g(θ0)︸ ︷︷ ︸
≥0

+EZ|x,θ0 log
p(Z|x, θ0)
p(Z|x, θ1)︸ ︷︷ ︸
≥0

.
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An Alternative View of EM

The EM algorithm is essentially an MM algorithm (Neal and Hinton, 1998).

Consider the following objective function

F (q, θ) = Eq(Z) log
p(x,Z|θ)
q(Z)

, (4)

where q denotes any pdf/pmf of Z and Eq(Z) denotes an expectation of Z

taken with respect of q. The objective function (4) can be re-expressed as

F (q, θ) = Eq(Z) log
p(x|θ)p(Z|x, θ)

q(Z)
= log p(x|θ)− Eq(Z) log

q(Z)

p(Z|x, θ)
.

So maxq,θ F (q, θ) is achieved by setting θ = θ̂mle and q to be p(z|x, θ̂mle). In

other words, we can obtain θ̂mle as a byproduct of maximizing F (q, θ).
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Next we show that EM can be viewed as a coordinate descent algorithm on

F (q, θ): at the t-th iteration,

• E-step: qt+1 = argmaxq F (q, θ
t) = p(z|x, θt);

• M-step: θt+1 = argmaxθ F (q
t+1, θ) = argmaxθ

[
EZ|x,θt log p(x,Z|θ)

]
.

The alternative view of EM

• provides a justification for some variants of EM algorithms such as

generalized EM (GEM) where only partial implementation of the E or M

steps is performed

• can handle cases where we have some special constraints on the latent

variable (Graca et al, 2007)

• motivates variational EM algorithms
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Variational EM

• Given θ, the optimal choice for q is p(z|x, θ), which maximizes

F (q, θ) = Eq(Z) log
p(x|θ)p(Z|x, θ)

q(Z)
.

But p(z|x, θ) may not be easy to obtain and approximation is needed for

tractable computation.

• For example, we can optimize F (q, θ) subject to constraint that q(z) can

be factorized as
∏n
i=1 qi(zi). Then we can apply coordinate descent over

(θ, q1, . . . , qn) to maximize

F (θ, q1, · · · , qn) = Eq1,...,qn log
p(x|θ)p(Z|x, θ)
q1(Z1) · · · qn(Zn)

.
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Latent Dirichlet Allocation (LDA)
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Source: Blei (2012) “Probabilistic topic models”
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