Model-based Clustering

Model-based clustering refers to clustering a set of data points (x1,...,x,) by

fitting a mixture model on this data set, where each cluster corresponds to a

component of the mixture model.

o | o | ®
Z @ A ‘.:.'..:.l..
A i. T [ 1]
..{ o
L 2 f{f‘ qfs*"
Al tpl
2’ L ]
LRt
g) [e] (a)] L\_J L] ,‘
£ o 4 o £ o | O A4 24
o] o T M~ F A r
= E A A
o 5 CE? © A A
° 0000(82,0 o
] o |
A 3

eruptions eruptions



Mixture Models

e Consider a mixture model with K components, whose pdf is given by

fl) =) mfula| ),

where the mixing weight 7y, is between 0 and 1 and ), m; = 1, and
frx(- | 0k) is a pdf with parameter 6.

Scenario 2: the two-dimensional data X € R? in each class is generated from
a mixture of 10 different bivariate Gaussian distributions with uncorrelated
components and different means, 1.e.,

XY =k, Z=1 ~ N(my,sIy),

where k =0,1,1=1:10, P(Y = k) = 1/2, and P(Z = 1) = 1/10. In other
words, given ¥ = k, X follows a mixture distribution with density function
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e A random sample from the mixture model above can be generated by the

following two steps:

1. Generate Z from a multinomial distribution with P(Z = k) = 7 and

k=1.2,... K.

2. Conditioning on Z = k, generate X from fi, the k-th component.



A Two Components Gaussian Mixture

Consider a simple case where K = 2, x; € R, and each component is a
Gaussian distribution with mean py and variance o7, i.e., a one-dimensional

two-component Gaussian mixture model. The pdf is given by
p(ilf‘(g) — qu,ul,a% (ZE) T (1 o W)¢M2’G§ (:E) (1)

where

¢u,02 (3;) — \/2;7 exp{ . (372—05) }

and 0 = (i1, po, 02,05, m) denotes all parameters of this mixture model.



Given n training samples x = (z1,...,x,), the log-likelihood is
log p(x|0) = Zlog 761 a2 (20) + (1= )y, 03 (1) (2)

The MLE of the parameter 0 = (m, uu1, 0%, pi2, 03) is defined to be
éMLE = arg mng log p(x|6),

which is not easy to compute. Why? Log-likelihood of a single normal pdf

takes a derivative friendly form,

1 . 2
log ¢,, o2 () = ) log 0% — (ngg) + const.,

but log-likelihood of a weighted summation of normal pdfs does not.



The calculation is much easier if we knew which component z; belongs to.

Introduce the latent variable Z; =1 or 2.

Z; ~ Bern(m)

The likelihood of the full data (x,z) is given by
i {zi=1} {zi=2}
H [7’(’@5“1,0% (xz)] {(1 o 7T)¢,LL2,O'§ (xZ)} .
i=1

The log-likelihood is given by

Z 1{zi:1} [1Og ¢,u1,0'% ('CUZ) + 1Og ﬂ-] + 1{2@22} [log ¢,LL2,0'§ (JZ‘@) + 1Og(1 _ 7-‘-)}

— Z [log ¢M1,0% (;) + log 7T] + Z [log ¢,LL2,0'% (w;) +log(1 — W)}

1:2;=1 1:2;, =2



The MLE for 6 = (p1.2,0%.,, ) is given by

1i2i= ’I:!ZZ:
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and © = ni/n. Why the MLE of 7 is ny/n?

nylogm + (n —nq)log(l — 1) E10g7T+ (1 — E) log(1 — )

n n
ni m ni (1—7'(')

— My - My C
n Ognl/n+( n)ogl—nl/n+

where C' is a constant not depending on 7 and the sum is the negative KL
distance between two distributions, which is non-positive and is zero only if

T =ni/n.



Kullback-Leibler Distance

The KL distance between two distributions, p(:) and ¢(-), is defined to be

p(z) - pj
p(x)log —=dx, or E p; log =
/ w18 o) = Ty

for continuous and discrete cases, respectively. Note that KL distance is not

symmetric.

Using Jensen’s inequality, we can show that

p(X)
q(X)

a7 4(X)

p(X)] = — log (EP(X)M) = 0.

So K L(p|lq) > 0 and = 0 iff p and ¢ are the same distribution (up to a

KL(pll) = Epex) log 2 = By [ ~log

measure zero set).



However, we do not observe z;'s. Consider the following iterative scheme: start

with some initial guess of 6, then

a) calculate the corresponding distribution of Z;:




b) Now, for each point z;, instead of allocating it to component 1 or 2, we
count its ; fraction to component 1 and (1 — ~;) fraction to component

2, and update 0 = (m, 1, 0%, p2, 03) as follows

We can iterative the two steps until the value of 6 gets stabilized. Is the

returned value of 6 the MLE that maximizes the marginal likelihood p(x|6)?
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The EM Algorithm

The Expectation-Maximization (EM) algorithm is an iterative method that

finds the MLE by enlarging the sample with unobserved latent data.

Suppose our observed data is x with log-likelihood log p(x|#) that depends on
unknown parameter 6. Using latent variable z, the log-likelihood can be

written as
log p(x]6) 10gzp x,z|0) =log >  p(z|0)p(x|z,0). (3)

Direct maximization of (3) is quite difficult due to the sum inside the logarithm.

In the EM algorithm, we pretend we knew Z, then we can maximize log of the

joint likelihood

log p(x, Z|0) = log p(Z|0) + log p(x|Z, 0).
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Each iteration of the EM algorithm involves two steps, the E-step and the
M-step.

e E-step: Let Oy denote the current value of 8. Find p(Z|x,6,), the
distribution of the latent variable Z given the data x and 6, and then

calculate the following expectation

9(0) = Ez|x,0, log p(x, Z|0)

which is

> p(Z=zx,00)logp(x,z[f), or /p(2|x,90)logp(x,2\9)dz.

e M-step: Find 61 that maximizes g(f).

e Replace 6y by 61 and repeat the above E and M steps until convergence.
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Next we show that
g(01) > g(bo) = p(x[01) > p(x]00),

that is, each iteration of the EM algorithm increases (or at least doesn't

decrease) the marginal likelihood p(x|0). Recall g(6) = Ezx ¢, log p(x, Z|0).

p(x, Z|61) p(x[01)p(Z|x, 01)

0:) — q(b = K < 010 =K X 010
g9(61) — g(6o) Z|x,0 gp(X,ZWo) Z|x,9 gp(x|00)p(Z\x, o)
p(x|601) p(Zx, 0o)
lo — Ezix0. 10
®p(x[00) AP O L(ZIx, 0y)

where the 2nd term is the Kullback-Leibler distance between two distributions

which is always non-negative. So

p(x|61) p(Z|x, 0o)
1 = g(01) — g(8y) + E 1 .
" p(xI00) 9(1) ~ 9(60) FEzjx.0, log p(Z|x,61)
ZO (. ~ 7

>0
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An Alternative View of EM

The EM algorithm is essentially an MM algorithm (Neal and Hinton, 1998).

Consider the following objective function

x, Z|0)
¢(Z)

where ¢ denotes any pdf/pmf of Z and E,(z) denotes an expectation of Z

F(q,0) = Ey(z)log d (4)

taken with respect of ¢q. The objective function (4) can be re-expressed as

q(Z)
Z|x,0)

x|0)p(Z]x, 0)
q(Z)

p
F(q,0) = Eq(z) log ( = log p(x|0) — Eq(z) log o

So max, ¢ F'(q,0) is achieved by setting 6 = Omie and ¢ to be p(z|x, ém|e). In

other words, we can obtain e as a byproduct of maximizing F(q,0).
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Next we show that EM can be viewed as a coordinate descent algorithm on

F(q,0): at the t-th iteration,
o E-step: ¢'*! = argmax, F(q,0") = p(z|x, 6%);

o M-step: 07! = argmaxy F(¢'™!,0) = arg maxy [Ez|x’gt logp(x,Z|0)].

The alternative view of EM

e provides a justification for some variants of EM algorithms such as

generalized EM (GEM) where only partial implementation of the E or M

steps is performed

e can handle cases where we have some special constraints on the latent

variable (Graca et al, 2007)
e motivates variational EM algorithms
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https://papers.nips.cc/paper/3170-expectation-maximization-and-posterior-constraints

Variational EM

e Given 6, the optimal choice for q is p(z|x, #), which maximizes

x|0)p(Z|x, 6)
q(Z) |

But p(z|x,60) may not be easy to obtain and approximation is needed for

p
F(Qa 6) — IEq(Z) log (

tractable computation.

e For example, we can optimize F(q, ) subject to constraint that ¢(z) can
be factorized as [];_, ¢i(z:). Then we can apply coordinate descent over
(0,q1,--.,q,) to maximize

p(x|0)p(Z]x, 0)
¢1(Z1) - qn(Zn)

F(07 q17 e 7qn) — Eer"?Qﬂ log

16



Latent Dirichlet Allocation (LDA)

N

Documents Topics
N9 o ¥
Sy s SOA07 o7 . - .
& & KX K Mixing Weights
w 1 w_1
2
o " Y S
& F
topic_K HHHH
w.V w_V

Each topic is a distribution over words
Each word is a draw from a topic
Each document is a mixture of topics
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Topics

gene 0.04
dna 0.02
genetic 0.01

"'-—_—--"".‘f.___

life 0.02
evolve 0.01
organism 0.01

“H_.a-—""rﬂrﬂ_“

brain 0.04
MEuUron 0.02
nerve 0.00

‘-___-r""'.’-r.-—-_-

data 0.02
number 0.02
computer 0.01

‘--._,_.—-""".f#_.___

Topic proportions and

Documents assignments

Seeking Life’s Bare (Genetic) Necessities
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Source: Blei (2012) “Probabilistic topic models”
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