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Consider a HMM for (Z,X) = (Z1, . . . , Zn, X1, . . . , Xn) where Xi’s are

observed and Zi’s are hidden. Let’s assume that both Z and X are discrete

random variables, taking mz and mx possible values, respectively. So the

HMM is parameterized by θ = (w,A,B) where

• wmz×1: distribution for Z1;

• Amz×mz
: the transition probability matrix from Zt to Zt+1;

• Bmz×mx : the probability matrix (the emission distribution) from Zt to Xt.

Symbols in red are the five elements of a discrete HMM.
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Issues

• Forward probabilities: αt(i) = pθ(x1, . . . , xt, Zt = i)

– How uncertainty is the latent state at time t given all the data

till time t?

– What’s the likelihood of the data sequence?

p(x|θ) =
∑
i

pθ(x1, . . . , xn, Zn = i) =
∑
i

αn(i).

• Backward probabilities: βt(i) = pθ(xt+1, . . . , xn|Zt = i)

– Given the latent state at time t, what’s our prediction on future data?

• Given x = (x1 . . . , xn), how to compute the MLE of θ = (w,A,B)?

• Given x = (x1 . . . , xn) and θ, what can we say about the latent states, i.e.

pθ(Z1, . . . , Zn | x)?
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Forward Probabilities

The forward probabilities αt(i) = pθ(x1, . . . , xt, Zt = i) can be calculated

recursively.

When t = 1,

α1(i) = pθ(x1, Z1 = i)

= pθ(Z1 = i)× pθ(x1 | Z1 = i)

= w(i)B(i, x1).
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When t = 1, α1(j) = pθ(x1, Z1 = j) is known.

When t = 2,

α2(i) = pθ(x1, x2, Z2 = i)

=
∑
j

pθ(x1, x2, Z1 = j, Z2 = i)

=
∑
j

pθ(x1, Z1 = j)× pθ(Z2|x1,Z1 = j)× pθ(x2|x1, Z1 = j,Z2 = i)

=
∑
j

α1(j)A(j, i)B(i, x2)
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The forward probabilities αt(i) = pθ(x1, . . . , xt, Zt = i) can be calculated

recursively. Suppose αt(j) = pθ(x1, . . . , xt, Zt = j) is known.

αt+1(i) = pθ(x1, . . . , xt+1, Zt+1 = i)

=
∑
j

pθ(x1, . . . , xt+1, Zt = j, Zt+1 = i)

=
∑
j

pθ(x1, . . . , xt, Zt = j)× pθ(Zt+1 = i|x1, . . . , xt,Zt = j)

×pθ(xt+1|x1, . . . , xt, Zt = j,Zt+1 = i)

=
∑
j

αt(j)A(j, i)B(i, xt+1)
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Backward Probabilities

The backward probabilities βt(i) = pθ(xt+1, . . . , xn|Zt = i) can be calculated

recursively.

βn−1(i) = pθ(xn|Zn−1 = i)

=
∑
j

pθ(xn, Zn = j|Zn−1 = i)

=
∑
j

pθ(Zn = j|Zn−1 = i)× pθ(xn|Zn = j, Zn−1 = i)

=
∑
j

A(i, j)B(j, xn)

=
∑
j

A(i, j)B(j, xn)βn(j), Define βn(j) = 1 for all j
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The backward probabilities βt(i) = pθ(xt+1, . . . , xn|Zt = i) can be calculated

recursively.

βt(i) = pθ(xt+1, . . . , xn|Zt = i)

=
∑
j

pθ(xt+1, . . . , xn, Zt+1 = j|Zt = i)

=
∑
j

pθ(Zt+1 = j|Zt = i)× pθ(xt+1|Zt+1 = j, Zt = i)

×pθ(xt+2, . . . , xn|xt+1,Zt+1 = j, Zt = i)

=
∑
j

A(i, j)B(j, xt+1)βt+1(j)

with

βn(i) = 1.
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The Baum-Welch Algorithm

• The log likelihood on the observed data is given by

log
[
p(x|θ)

]
= log

[∑
z

p(x, z|θ)
]
,

which is difficult to optimize due to the summation inside the log.

• The log likelihood for the complete data (Z,x) is given by

log
[
w(Z1)

n−1∏
t=1

A(Zt, Zt+1)

n∏
t=1

B(Zt, xt)
]

= logw(Z1) +
n−1∑
t=1

logA(Zt, Zt+1) +
n∑
t=1

logB(Zt, xt).
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To describe the EM (a.k.a. the Baum-Welch) algorithm, define

γt(i, j) = pθ(Zt = i, Zt+1 = j|x), γt(i) = pθ(Zt = i|x) =
∑
j

γt(i, j).

At the E-step, we have

EZ|x,θ0 log p(Z,x|θ)

= EZ|x,θ0

[
logw(Z1) +

n−1∑
t=1

logA(Zt, Zt+1) +
n∑
t=1

logB(Zt, xt)
]

=

mz∑
i=1

γ1(i) logw(i) +
n−1∑
t=1

mz∑
i,j=1

γt(i, j) logA(i, j) +
n∑
t=1

mz∑
i=1

γt(i) logB(i, xt)

=

mz∑
i=1

γ1(i) logw(i) +

mz∑
i,j=1

n−1∑
t=1

γt(i, j) logA(i, j) +

mz∑
i=1

n∑
t=1

γt(i) logB(i, xt).
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mz∑
i=1

γ1(i) logw(i) +

mz∑
i,j=1

n−1∑
t=1

γt(i, j) logA(i, j) +

mz∑
i=1

n∑
t=1

γt(i) logB(i, xt)

=

mz∑
i=1

γ1(i) logw(i) +

mz∑
i

[ mz∑
j=1

γ+(i, j) logA(i, j)
]
+

mz∑
i=1

mx∑
l=1

( ∑
t:xt=l

γt(i)
)
logB(i, l) (∗)

At the M-step, when updating the parameters (w,A,B), we will repeatedly use

the following result (which we have proved when discussing two component

Gaussian mixturers): consider the following function of (w1, . . . , wm):

J(w) = a1 logw1 + a2 logw2 + · · ·+ am logwm

where aj ≥ 0, and (w1, . . . , wm) is a probability vector (i.e., 0 ≤ wj ≤ 1 and∑
j wj = 1). The maximum of J(w) is achieved by wj = aj/

∑
j′ aj′ .
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• Update w: The maximum of
∑mz

i=1 γ1(i) logw(i) is achieved by

w∗(i) = γ1(i), i = 1, . . . ,mz.

Note that
∑
i γ1(i) = 1.

• Update Amz×mz
: Note that each row of A, {A(i, j)}mz

j=1, is a probability

vector, so
mz∑
j=1

γ+(i, j) logA(i, j)

is maximized by

A∗(i, j) =
γ+(i, j)∑
j′ γ+(i, j

′)
=

∑n−1
t=1 γt(i, j)∑

j′
∑n−1
t=1 γt(i, j

′)
, i, j = 1, . . . ,mz.
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• Update Bmz×mx : Note that each row of B, {B(i, l)}mx

l=1, is a probability

vector, so
mx∑
l=1

( ∑
t:xt=l

γt(i)
)
logB(i, l)

is maximized by

B∗(i, l) =

∑
t:xt=l

γt(i)∑
t γt(i)

, i = 1, . . . ,mz, l = 1, . . . ,mx.

• In the coding assignment, you will be asked not to update w∗(i).
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How to calculate γt(i, j)?

pθ(Zt = i, Zt+1 = j|x)

∝ pθ(x1:t, Zt = i, Zt+1 = j, xt+1,xt+2:n)

= pθ(x1:t, Zt = i)× pθ(Zt+1 = j|Zt = i)

×pθ(xt+1|Zt+1 = j)× pθ(xt+2:n|Zt+1 = j)

= αt(i)A(i, j)B(j, xt+1)βt+1(j),
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Inference on the Hidden States Z

There are several ways to find the “optimal” hidden state sequence Z given an

observation sequence x, depending on the definition of “optimality”.

• One optimality criterion is to choose the hidden states Zt’s that are

individually most likely, that is,

Ẑ∗t = argmaxi pθ(Zt = i|x) = argmax
i
γt(i).

Here we can plug in θ̂ from the aforementioned EM algorithm. Such a

solution is optimal in the sense that it maximizes the expected number of

correct states (by choosing the most likely state for each t). However, the

resulting sequence may not the most likely one and it may not even be a

valid sequence, for example, Ẑ∗t = 1 and Ẑ∗t+1 = 2, but A12 = 0.
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• An alternative approach is to find the most likely single sequence (or

path), that is,

Ẑ∗ = argmaxi1,...,in pθ(Z1 = i1, . . . , Zn = in|x).

The solution is obtained via a dynamic programming method, known as

the Viterbi algorithm. Define

δt(i) = max
j1,...,jt−1

pθ(Z1 = j1, . . . , Zt−1 = jt−1, Zt = i,x1:t),

which is the highest probability along a single path from time 1 to t, which

accounts for the first t observations x1:t and ends in a hidden state Zt = i.

In particular

δ1(i) = pθ(Z1 = i, x1) = w(i)B(i, x1).
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By induction we have

δt+1(i) = max
j1:(t−1),j

pθ(Z1 = j1, . . . , Zt−1 = jt−1, Zt = j, Zt+1 = i,x1:(t+1))

= max
j1:(t−1),j

[
pθ(Z1 = j1, . . . , Zt−1 = jt−1, Zt = j,x1:t)×

pθ(Zt+1 = i|Zt = j)× pθ(xt+1|Zt+1 = i)
]

=
[
max
j
δt(j)A(j, i)

]
B(i, xt+1).

Note that the recursive formula above is similar to the one for αt(i). The

major difference is that the maximization over previous states is used for δt

and the integration/summation is used for αt.
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• Next we solve for the most likely single sequence Ẑ∗ backward

Ẑ∗ = argmaxi1,...,in pθ(Z1 = i1, . . . , Zn = in|x)

– The best value for Ẑ∗n. δn(i) stores the highest probability of a Z

sequence that ends with Zn = i. So

Ẑ∗n = argmax
i
δn(i).

– The best value for Ẑ∗n−1. Note that we have already known Ẑ∗n = j∗n:

Ẑ∗n−1 = argmax
i

[
δn−1(i)A(i, j

∗
n)
]

– The best value for Ẑ∗t−1, given we have known the optimal values for

Ẑ∗t:n.

Ẑ∗t−1 = argmax
i

[
δt−1(i)A(i, j

∗
t )
]
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