
Classification

• We have n observations; each of them consists of p measurements and

they are from two classesa.

• The goal is to find a classification rule which takes the p measurements as

the input and outputs the class label.

• We would like our prediction rule makes small errors not only on the n

samples, but also on future observations.

aLet’s focus on binary classification at this moment.
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How to Learn a Classifier

• Collect a training sample (xi, yi)
n
i=1 where xi ∈ Rp, yi ∈ {0, 1}

• Pick a collection of functions

f : Rp −→ {0, 1}.

• Pick a loss function: e.g., measure the performance of a classifier at (x, y)

by a loss function L(f(x), y), e.g., the 0–1 loss

L(f(x), y) = 0, if y = f(x); 1, if y 6= f(x).

• Find an optimal classifier by minimizing

min
f

1

n

n∑
i=1

L(f(xi), yi).
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The Optimal Classifier

Consider an ideal situation: we have infinite samples (or equivalently, we know

how data (x, y) are generated), then

1

n

n∑
i=1

L(f(xi), yi)→ EX,Y L(f(X), Y ),

where the expectation is taken wrt the true data generating process P (x, y).

Define Risk[f ] = EX,Y L(f(X), Y ). The optimal classifier is given by

f∗ = arg min
f

Risk[f ]

Suppose we adopt the 0–1 loss, and are allowed to use any function f . What’s

the optimal f∗?
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Risk[f ] = EX,Y L(f(X), Y ) =

∫
X

∫
Y
L(y, f(x))p(x, y)dydx

=

∫
X

∫
Y
L(y, f(x))p(y|x)p(x)dydx

=

∫
X

[ ∫
Y
L(y, f(x))p(y|x)dy

]
p(x)dx

where

• p(x) is the marginal distribution function of X;

• p(y|x) is the conditional distribution function of Y given X = x;

• p(x)p(y|x) is the joint distribution function of (X,Y ).
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Risk[f ] =

∫
X

[∫
Y
L(y, f(x))p(y|x)dy

]
p(x)dx

The problem of finding f that minimizes Risk[f ] =⇒ (reduced to) a series of

sub-problems: for each given x, find the optimal value of f(x) to minimize the

inside integral.

f∗(x) = arg min
a

∫
Y
L(y, a)p(y|x)dy

We can do this for every x, and then the resulting f∗ (of course, it may not be

continuous) minimizes Risk[f ].

turns out to be not difficult to solve. Note that Y is just a discrete random

variable taking two possible values, whose pmf is given by

P (Y = 1|x) = η(x), P (Y = 0|x) = 1− η(x).
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Given x, the integral over y (as a function of a) is given by∫
Y
L(y, a)p(y|x)dy = L(1, a) · P (Y = 1|x) + L(0, a) · P (Y = 0|x)

= L(1, a) · η(x) + L(0, a) · (1− η(x))

=

 1− η(x), if a = 1

η(x), if a = 0

So

f∗(x) = arg min
f
R[f ] =

 1, if η(x) ≥ 0.5

0, if η(x) < 0.5

The optimal classifier f∗ is called the Bayes rule and the corresponding risk

R[f∗] is referred to as the Bayes risk or Bayes error (which is what you

computed in Coding Assignment 1).
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• The calculation can be easily extended to multi-class classification. For

multi-class problems where y ∈ {1, . . . ,K}, the optimal rule is

f∗(x) = arg max
k

P (Y = k|X = x).

• The classifiers that output 0/1 divide the X-space into different regions

and each region is assigned to either 1 or 0. Sometimes, we do not

describe f , but the decision boundary.

• Linear classifiers refer to classification methods whose decision boundaries

are linear function of x.
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Discriminant Analysis

• Estimate the joint distribution P (x, y) = P (x|y)p(y) by estimating

– p(x|y) (dist of X in each class) and

– p(y) (marginal frequency of each class),

and then use Bayes theorem to flip things around and obtain P (y|x).

• Quadratic Discriminant Analysis (QDA)

• Linear Discriminant Analysis (LDA) and its connection with Fisher

Discriminant Analysis (FDA).

• Naive Bayes
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Bayes Theorem for Classification

We have learned that the optimal classifier (i.e., the Bayes rule) does

classification based on the conditional probability, which by the Bayes Theorem

takes the following form

P (Y = k|X = x) =
P (X = x, Y = k)

P (X = x)

=
P (X = x|Y = k) · P (Y = k)

P (X = x)

=
πkfk(x)

P (X = x)
∝ πkfk(x)

fk(x) denotes P (X = x|Y = k) and πk = P (Y = k)
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• fk(x): conditional density function of X|Y = k

• πk = P (Y = k): the marginal probability or prior probability for class k.

We can write the decision function as

f(x) = arg max
k

πkfk(x) = arg max
k

[
log πk + log fk(x)

]
.

To construct a classifier, we just need to estimate πk’s and fk’s.
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QDA

Given Y = k, let’s model the p-dim feature x by a multivariate normal

distribution with mean µk and covariance matrix Σk.

µk =



µk,1

µk,2

...

µk,p


p×1

, Σ−1k =


θk,11 · · · θk,1p

θk,p1 · · · θk,pp


p×p

Its pdf is given by

fk(x) =
1

(
√

2π)p
1

|Σk|1/2
exp

[
− 1

2
(x− µk)tΣ−1k (x− µk)

]
(x− µk)tΣ−1k (x− µk) =

p∑
j=1

p∑
l=1

θk,jl(xj − µk,j)(xl − µk,l)
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P(Y = k | x) ∝ πkfk(x) ∝ e−dk(x)/2

dk(x) = 2
[
− log fk(x)− log πk

]
− Constant

= (x− µk)tΣ−1k (x− µk) + log |Σk| − 2 log πk,

where the first term is the so-called Mahalanobis distance between x and µk

and πk = P (Y = k) is the class frequency for the k-th class. We can predict x

to class k if dk(x) achieves the minimum among (d1(x), . . . , dK(x)).
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• The classification rule above is called quadratic discriminant analysis

(QDA), since it leads to quadratic decision boundaries.

• In practice we need to estimate πk,µk,Σk.

Sample frequency and mean for each class:

π̂k =
nk
n
, µ̂k =

1

nk

∑
i:yi=k

xi, k = 1 : K.

Sample covariance matrix for each class:

Σ̂k =
1

nk − 1

∑
i:yi=k

(xi − µ̂k)p×1(xi − µ̂k)t1×p.

What if Σ̂−1k does not exist? Replace it by (Σ̂k + ηIp)−1 where η is a

small number, e.g., η = 0.01.
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Summary of QDA

• Training

– Input: (xi, yi)
n
i=1

– Output: (πk,µk,Σk)Kk=1 (see formulae on previous slide.)

• Make Prediction

– Input: test point x∗ and output from Training

– For k = 1:K, compute

dk(x∗) = (x∗ − µk)tΣ−1k (x∗ − µk) + log |Σk| − 2 log πk.

– Output: arg mink dk(x∗).
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LDA

• If further assume Σk = Σ, all we need to compute is

dk(x) = (x− µk)tΣ−1(x− µk) + log |Σ| − 2 log πk (1)

which is a linear function of x:

(x− µk)tΣ−1(x− µk)

= xtΣ−1x− 2xtΣ−1µk + µT
k Σ−1µk

• Estimate Σ by the pooled sample covariance matrix:

Σ̂ =
1

n−K

K∑
k=1

∑
i:yi=k

(xi − µ̂k)(xi − µ̂k)t.
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What if Σ̂−1 does not exist? Replace it by (Σ̂ + ηIp)−1 where η is a small

number, or compute Σ̂−1 as follows (assume p = 3)

Σ̂ = Up×3


d1 0 0

0 d2 0

0 0 0

U t, Σ̂−1 = U


1/d1 0 0

0 1/d2 0

0 0 0

U t.
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Reduced Rank LDA

• Suppose Σ is an identity matrix Ip. Then, we can write the discriminant

function for LDA as

dk(x) = ‖x− µk‖2 − 2 log πk. (2)

The feature vector x only appears in the 1st term which is the squared

distance from x to µk, the center of the kth class.

• Two points determine a line; three points determine a plane; K class

centers determine a (K − 1)-dim subspace.

• Next we’ll show that we can replace the squared distance ‖x−µk‖2 in the

original p-dim space by a square distance in a (K − 1)-dim subspace. That

is, LDA naturally leads to dimension reduction from p to K − 1. (Of

course, here we assume (K − 1) < p.
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• WLOG, assume µ̄ = 0 (we care about the relative distance among points

so we can always move the origin to µ̄ without affecting the distance).

• The K vectors, (µ1, . . . ,µK), form a (K − 1)-dim subspace in Rp.

Denote this subspace by A. For any vector x in Rp,

x = x1 + x2, x1 ∈ A, x2 ∈ Ã.

where x1 is the projection of x onto the (K − 1)-dim subspace A, and x2

is the projection of x onto the (p−K + 1)-dim subspace that is

orthogonal to A.

• How to get this decomposition? You can run a regression of x against

B = (µ1, . . . ,µK−1)p×(K−1), and x1 = Hx = the fitted vector, x2 = the

residual vector, where H = B(BtB)−1Bt.
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• Due to the orthogonality of x1 and x2, we have

‖x‖2 = ‖x1 + x2‖2 = (x1 + x2)t(x1 + x2)

= xt
1x1 + xt

1x2 + xt
2x1 + x2

2x2 = ‖x1‖2 + ‖x2‖2.

The norm-square (length-square) of a vector = norm-square of its

projection onto A + norm-square of its projection onto Ã.

• Now let’s look at the square distance from a point x to µk, the center of

the kth class.

‖x− µk‖2 = ‖(x1 − µk) + (x2 − 0)‖2

= ‖x1 − µk‖2 + C, k = 1, . . . ,K,

where the constant C = ‖x2‖2 is the same for all k. Note that the

projection of µk onto Ã is zero.
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Note that for classification, all we care is the magnitude of dk(x):

dk(x) = ‖x− µk‖2 − 2 log πk

= ‖x1 − µk‖2 − 2 log πk + Const.

So we can operate LDA on this reduced (K − 1)-dim space A: replace data x

by x1 (its projection onto A) and compute

dk(x) = ‖x1 − µk‖2 − 2 log πk,

which is the same as running LDA in the original p-dimensional space. (We

assume Σ = I in our derivation.)
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Suppose Σ is not identity. Assume its SVD as Σ = UD2U t where D is

diagonal with non-negative entries and U is an orthonormal (i.e., rotation)

matrix with UU t = Ip, then we first transform x to x̃,

x ∈ Rp =⇒ x̃ = Σ
−1/2

x ∈ Rp, Σ
−1/2

:= UD−1U ta.

Then the covariance matrix of x̃ is identity:

Cov(x̃) = Cov(Σ
−1/2

x) = Σ
−1/2

Cov(x)(Σ
−1/2

)t

= UD−1U tΣUD−1U t = UD−1U tUD2U tUD−1U t = Ip.

aHow we scale a 1-dim variable to have unit variance? We multiple that variable by

1/
√
σ2. You can view Σ

−1/2
as the inverse of the square-root of Σ in the multi-dimensional

setting. Note Σ
−1/2

is symmetric and (Σ
−1/2

)(Σ
−1/2

) = Σ
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Summary of Reduced Rank LDA

• Training

– Input: (xi, yi)
n
i=1

– Output: (πk,µk)Kk=1 and Σ.
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• Make Prediction

– Input: test point x∗ and output from Training

– Compute SVD of Σ = UD2U t, and A = UD−1U t

– Compute the projection matrix H based on (Aµ1, . . . , AµK)

Bp×(K−1) =
[
A(µ1 − µ̄), . . . , A(µK−1 − µ̄)

]
, H = B(BtB)−1B.

– Dimension reduction: x̃∗ = HAx∗

– For k = 1:K, compute

dk(x∗) = ‖x̃∗ − µ̃k‖2 − 2 log πk.

where µ̃k = Aµk is the mean of the k-th class in the reduced space.

– Output: arg mink dk(x∗).
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• When p ≥ K, this means that for LDA, one can project the data onto a

lower-dimensional subspace (dim = K − 1), e.g., just one dimension for

binary classification.

• As we will see that the same subspace also arises in a dimension reduction

method called Fisher discriminant analysis (FDA), though FDA is

motivated from a slightly different aspect.

• Caution: Each of the (K − 1) directions are linear combinations of the

original p dimensions, and the weights are all learned from the data, so

overfitting can occur: good separation on “just” the (K − 1) (or even less)

directions on the training data, but the same good result cannot be

reproduced on the test data. See the analysis of the digits data on the R

page.
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Fisher’s Discriminant Analysis

• Find a direction a ∈ Rp such that the projection of data onto this direction

is well separated.

• Denote the projection of an observation xi ∈ Rp by ui = atxi ∈ R.

• What’s being well separated? The group means of ui’s are far apart from

each other, and within each group, the variation/spread is small, i.e.,

maximize the following ratio

Between group variation

Within group variation
=

atBa

atWa
.
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The within-class and between-class sample covariance matrices

Wp×p =
1

n−K

K∑
k=1

∑
i:yi=k

(xi − µ̂k)(xi − µ̂k)t

Bp×p =
1

K − 1

K∑
k=1

nk(µ̂k − ¯̂µ)(µ̂k − ¯̂µ)t

The following equalities are trivial.

x1 = x1 − µ̂y1
+ µ̂y1

x2 = x2 − µ̂y2
+ µ̂y2

. . . = . . .

xn = xn − µ̂yn + µ̂yn

You can view W as the sample covariance matrix over xi − µ̂yi (same as the

pooled sample covariance matrix Σ̂ in LDA), and B as the sample covariance

matrix over the K class centers µ̂yi .
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Generalized Eigenvalue Problem

max
a

atBa

atWa
=⇒ max

a
atBa subj to atWa = 1.

Assume W = UD2U t. Define b = W
1/2

a, where W
1/2

:= UDU t is symmetric

and write its inverse as W
−1/2

= UD−1U t.

atBa = atW
1/2

W
−1/2

BW
−1/2

W
1/2

a

= (W
1/2

a)tW
−1/2

BW
−1/2

(W
1/2

a)

= btW
−1/2

BW
−1/2

b, subj to ‖b‖2 = 1.

The optimization above is a classical eigenvalue problem!
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We can solve the directions sequentially as follows

• b1 = the 1st eigen-vector of matrix W
−1/2

BW
−1/2

, then solve

a1 = W
−1/2

b1.

• b2 = the 2nd eigen-vector of matrix W
−1/2

BW
−1/2

, then solve

a2 = W
−1/2

b2.

• Note that although bj ’s are orthonormal, but aj ’s are not:

bt
jbj = 1, atjWaj = 1

bt
jbl = 0, atjWal = 0.

• We can extract at most (K − 1) directions, since the rank of B is

(K − 1). The (K − 1) directions span exactly the same space as the one

from the reduced rank LDA.
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LDA vs FDA

• LDA: a classifier.

• FDA: a dimension reduction method, i.e., the output of FDA is a set of

directions, but not a classification rule.

• The normal assumption is never mentioned in FDA, but why the space

from FDA is similar to the reduced space from LDA?

FDA implicitly assumes the data from each group follows or approximately

follows a normal distribution with the same covariance matrix.
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LDA & QDA in High Dimension

• Singularity of the Covariance Matrix When dimension p is large, the inverse

of Σ̂ for Σ̂k may not exist. For example, if p > n, Σ̂, the p× p covariance

matrix for LDA, is of rank less than n. So we cannot compute Σ̂−1.

But singularity is not a serious issue, and we have discussed how to fix

singularity for LDA and QDA. A more serious issue is overfitting.

• When dimension p is large, even LDA could end up overfitting the data:

one can show that when p gets large, LDA could behave like random

guessing (i.e., classification error = 0.5).

• Regularization: restrict matrices/vectors to be sparse (e.g., sparse LDA or

regularization DA), or restrict features to be independent (NaiveBayes).
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Naive Bayes

• Recall: for multi-class problems the optimal decision rule is

arg max
k

P(Y = k|X = x) = arg max
k

πkfk(x).

• Require fk(x) to be

fk(x) = fk1(x1)× fk2(x2) · · · × fkp(xp),

i.e., each dim of x is independent (You can view independence as

regularization for high-dimensional problems).

• Then each density fkj (j = 1 : p, k = 1 : K) is estimated separately within

each class. E.g., discrete features via histograms; numerical features via

kernel density estimates (nonparametric NB) or normal densities

(parametric NB).
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Summary of Parametric Naive Bayes

• Training

– Input: (xi, yi)
n
i=1

– Output:
(
πk, (µkj , σ

2
kj)j=1:p

)K
k=1

• Make Prediction

– Input: test point x∗ and output from Training

– For k = 1:K, compute

dk(x∗) = −2 log
[
πk

1√
σ2
k1

e
− (x∗1−µk1)2

2σ2
k1 · · · 1√

σ2
kp

e
−

(x∗p−µkp)
2

2σ2
kp

]

= −2 log πk +

p∑
j=1

[
log σ2

kj +
(x∗j − µkj)

2

σ2
kj

]
– Output: arg mink dk(x∗).
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Summary

• For classification, the ultimate goal is to estimate P (Y = k|X = x).

• In Discriminant Analysis (DA), we estimate the joint

P (X = x, Y = k) = P (X = x|Y = k)× P (Y = k),

and then obtain P (Y = k|X = x).

• DA is conceptually simple and works for some low-dimensional problems,

but not an effective way of building classifiers.

• For example, for binary LDA with discriminant function (1):

dk(x) = −2xtΣ−1µk + µT
k Σ−1µk − 2 log πk

What matters is the decision boundary which is a linear function has
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(p+ 1) parameters:

d1(x)− d2(x) = −2xtΣ−1(µ1 − µ2) + β0 = xtβ + β0.

However, we estimate (β, β0) by learning a much larger collection of

parameters such as Σ, µ1, µ2 and π1.

• Next we’ll discuss how to directly learn P (Y = k|X = x) (e.g., logistic

regression, tree models) or directly learn the decision boundary (e.g.,

SVM).
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