
Discriminant Analysis

   Y       ~ Multinom(p_1, …, p_K) 
X | Y=k ~ f_k

For prediction, compute the decision function 
d_k(x) = log(p_k) + log(f_k(x)) - Constant

QDA : N(mu_k, Sigma_k) 
LDA  : N(mu_k, Sigma) 
NB    : Independent pdf over p-dim of x



QDA

Given Y = k, let’s model the p-dim feature x by a multivariate normal

distribution with mean µk and covariance matrix ⌃k.
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Its pdf is given by
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LDA

• If further assume ⌃k = ⌃, all we need to compute is

dk(x) = (x� µk)
t⌃�1(x� µk) + log |⌃|� 2 log ⇡k (1)

which is a linear function of x:

(x� µk)
t⌃�1(x� µk)

= x
t⌃�1

x� 2xt⌃�1µk + µT
k⌃

�1µk

• Estimate ⌃ by the pooled sample covariance matrix:

⌃̂ =
1

n�K

KX

k=1

X

i:yi=k

(xi � µ̂k)(xi � µ̂k)
t.
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What if ⌃̂�1 does not exist? Replace it by (⌃̂+ ⌘Ip)�1 where ⌘ is a small

number, or compute ⌃̂�1 as follows (assume p = 3)

⌃̂ = Up⇥3

0
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3rd-dim (after rotation) is the null space for all classes. 
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Reduced Rank LDA

• Suppose ⌃ is an identity matrix Ip. Then, we can write the discriminant

function for LDA as

dk(x) = kx� µkk2 � 2 log ⇡k. (2)

The feature vector x only appears in the 1st term which is the squared

distance from x to µk, the center of the kth class.

• Two points determines a line; three points determine a plane; K class

centers determine a (K � 1)-dim subspace.

• Next we’ll show that we can replace the squared distance kx�µkk2 in the

original p-dim space by a square distance in a (K � 1)-dim subspace. That

is, LDA naturally leads to dimension reduction from p to K � 1.
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• Make Prediction

– Input: test point x⇤ and output from Training

– Compute SVD of ⌃ = UD2U t, and A = UD�1U t

– Compute the projection matrix H based on (Aµ1, . . . , AµK)

Bp⇥(K�1) =
h
A(µ1 � µ̄), . . . , A(µK�1 � µ̄)

i
, H = B(BtB)�1B.

– Dimension reduction: x̃⇤ = HAx
⇤

– For k = 1:K, compute

dk(x
⇤) = kx̃⇤ � µkk2 � 2 log ⇡k.

– Output: argmink dk(x⇤).
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A = 1/     

How we compute the projection of x onto the K centers? 
Run a regression of x wrt a design matrix formed by  
(K-1) centers.  
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Fisher Discriminant Analysis

Supervised dimension reduction
Find a direction such that the 
projection of data (of multiple 
classes) onto this direction is  
well separated. 



The within-class and between-class sample covariance matrices

Wp⇥p =
1

n�K

KX

k=1

X

i:yi=k

(xi � µ̂k)(xi � µ̂k)
t

Bp⇥p =
1

K � 1

KX

k=1

nk(µ̂k � ¯̂µ)(µ̂k � ¯̂µ)t

The following equalities are trivial.

x1 = x1 � µ̂y1
+ µ̂y1

x2 = x2 � µ̂y2
+ µ̂y2

. . . = . . .

xn = xn � µ̂yn
+ µ̂yn

You can view W as the sample covariance matrix over xi � µ̂yi
(same as the

pooled sample covariance matrix ⌃̂ in LDA), and B as the sample covariance

matrix over the K class centers µ̂yi
.
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Generalized Eigenvalue Problem

max
a

a
tBa

atWa
=) max

a
a
tBa subj to a

tWa = 1.

Assume W = UD2U t. Define b = W
1/2

a, where W
1/2

:= UDU t is symmetric

and write its inverse as W
�1/2

= UD�1U t.

a
tBa = a

tW
1/2

W
�1/2

BW
�1/2

W
1/2

a

= (W
1/2

a)tW
�1/2

BW
�1/2

(W
1/2

a)

= b
tW

�1/2

BW
�1/2

b, subj to kbk2 = 1.

The optimization above is a classical eigenvalue problem!

27

Different from PCA. 



We can solve the directions sequentially as follows

• b1 = the 1st eigen-vector of matrix W
�1/2

BW
�1/2

, then solve

a1 = W
�1/2

b1.

• b2 = the 2nd eigen-vector of matrix W
�1/2

BW
�1/2

, then solve

a2 = W
�1/2

b2.

• Note that although bj ’s are orthonormal, but aj ’s are not:

b
t
jbj = 1, a

t
jWaj = 1

b
t
jbl = 0, a

t
jWal = 0.

• We can extract at most (K � 1) directions, since the rank of B is

(K � 1). The (K � 1) directions span exactly the same space as the one

from the reduced rank LDA.
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Connection with reduced rank LDA 
Consider a simple case :W = I, then 
what’s the (K-1)-dim space spanned 
by eigenvectors of B? 



LDA vs FDA

• LDA: a classifier.

• FDA: a dimension reduction method, i.e., the output of FDA is a set of

directions, but not a classification rule.

• The normal assumption is never mentioned in FDA, but why the space

from FDA is similar to the reduced space from LDA?

FDA implicitly assumes the data from each group follows or approximately

follows a normal distribution with the same covariance matrix.
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Dimension reduction algorithm
FDA is a supervised.  
PCA is unsupervised.  
FDA can be applied on regression too. 
What out for overfitting. 



1
1
1
0
0
0

b_{6x1}=

We can project the 6-dim feature space  
into a one-dim space, such as the 
projections for the blue = 1, and red = 0.  

So two-classes are well-separated. 



LDA & QDA in High Dimension

• Singularity of the Covariance Matrix When dimension p is large, the inverse

of ⌃̂ for ⌃̂k may not exist. For example, if p > n, ⌃̂, the p⇥ p covariance

matrix for LDA, is of rank less than n. So we cannot compute ⌃̂�1.

But singularity is not a serious issue, and we have discussed how to fix

singularity for LDA and QDA. A more serious issue is overfitting.

• When dimension p is large, even LDA could end up overfitting the data:

one can show that when p gets large, LDA could behave like random

guessing (i.e., classification error = 0.5).

• Regularization: restrict matrices/vectors to be sparse (e.g., sparse LDA or

regularization DA), or restrict features to be independent (NaiveBayes).
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Naive Bayes

• Recall: for multi-class problems the optimal decision rule is

argmax
k

P(Y = k|X = x) = argmax
k

⇡kfk(x).

• Require fk(x) to be

fk(x) = fk1(x1)⇥ fk2(x2) · · ·⇥ fkp(xp),

i.e., each dim of x is independent (You can view independence as

regularization for high-dimensional problems).

• Then each density fkj (j = 1 : p, k = 1 : K) is estimated separately within

each class. E.g., discrete features via histograms; numerical features via

kernel density estimates (nonparametric NB) or normal densities

(parametric NB).
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How many parameters for 
parametric f_k? A product of 
independent one-dim normals: p 
means, p variances. 



Summary of Parametric Naive Bayes

• Training

– Input: (xi, yi)ni=1

– Output:
�
⇡k, (µkj ,�2

kj)j=1:p

�K
k=1

• Make Prediction

– Input: test point x⇤ and output from Training

– For k = 1:K, compute

dk(x
⇤) = �2 log

h
⇡k

1p
�2
k1

e
� (x⇤

1�µk1)2

2�2
k1 · · · 1q

�2
kp

e
�

(x⇤
p�µkp)2

2�2
kp

i

= �2 log ⇡k +
pX

j=1

h
log �2

kj +
(x⇤

j � µkj)2

�2
kj

i

– Output: argmink dk(x⇤).
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Parameters:  
pi: K-by-1 
mu: K-by-p 
sigmasq: K-by-p



Summary: Discriminant Analysis

P(x, y) = P(Y=y | X=x) P(X=x)
            = P(X=x | Y=y) P(Y=y)

Joint dist Marginal of YConditions of X|Y

Dist of p-dim X given Y=k: QDA, LDA (FDA), NB 



(p+ 1) parameters:

d1(x)� d2(x) = �2xt⌃�1(µ1 � µ2) + �0 = x
t� + �0.

However, we estimate (�,�0) by learning a much larger collection of

parameters such as ⌃, µ1, µ2 and ⇡1.

• Next we’ll discuss how to directly learn P (Y = k|X = x) (e.g., logistic

regression, tree models) or directly learn the decision boundary (e.g.,

SVM).
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