Discriminant Analysis

Y ~ Multinom(p_1,....p_k)
XY=k ~

For prediction, compute the decision function
d_k(x) = log(p_«) + log( ) - Constant

QDA : N(mu_k, Sigma_k)
LDA : N(mu_k, Sigma)
NB : Independent pdf over p-dim of x



QDA

Given Y = k, let's model the p-dim feature x by a multivariate normal

distribution with mean p; and covariance matrix Y.

( i1 \

( Ok11 - Orip \

k.2 B

/’l’k: — _ ) Zk ! —
\ Ohpr - Oupp )
\ K. p ) p>p
pXx1
lts pdf is given by
1
fe(x) =
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LDA

e If further assume X, = 3, all we need to compute is

di,(x) = (x — )27 (x — ) + — 2logmy,

which is a linear function of x:

(x — pz,) ST (x — py,)

= —2x'S T g By,

e Estimate X by the pooled sample covariance matrix:

— fu)"

k 17,yZ
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What if £~ does not exist? Replace it by (X 4 7L,)~" where 7 is a small

number, or compute X~ as follows (assume p = 3)

(a4, 0 0) (1, 0 o)
N=Upms| 0 dy 0 |U, X'=U| 0o 1/d, 0 |U"

\ 0 0 0 \ 0 0 0

3rd-dim (after rotation) is the null space for all classes.
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What if £~ does not exist? Replace it by (X 4 7L,)~" where 7 is a small

number, or compute X~ as follows (assume p = 3)

(a0 0 ) (1) 0 o)
S=Ups| 0 dp 0 |UY S'=U| 0o 1/d, 0 |U"
\ 0 0 0 \ 0o 0 0
3rd-dim (after rotation) is the null space for all classes.
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Reduced Rank LDA

e Suppose X is an identity matrix I,. Then, we can write the discriminant

function for LDA as

di(x) =[x — p||* — 2log . (2)

The feature vector x only appears in the 1st term which is the squared

distance from x to u,., the center of the kth class.

e Two points determine! a line; three points determine a plane; K class

centers determine a (K — 1)-dim subspace.

e Next we'll show that we can replace the squared distance ||x — .|| in the
original p-dim space by a square distance in a (K — 1)-dim subspace. That
is, LDA naturally leads to dimension reduction from p to K — 1.

hen (K-1)<p
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. K
e Make Prediction Output: (mk, g )i—; and X.

— Input: test point x* and output from Training

— Compute SVD of ¥ = UD?U?, and A =UD~'U* A=1/0

— Compute the projection matrix H based on (Apq, ..., Apy)

BpX(K—l) — [A(“’l o ﬁ)? ak '7A(I'I’K—1 o ﬁ):|7 H = B(BtB)_lB

— Dimension reduction: x* = HAx™

— For k = 1:K, compute
dip(x*) = ||X* — p ||* — 21log my.

— Output: arg ming dg(x*).

How we compute the projection of x onto the K centers?
Run a regression of x wrt a design matrix formed by
(K-1) centers. +



Fisher Discriminant Analysis

3-class feature data

Supervised dimension reduction
b % ag o Find a direction such that the
| - oo%se,  projection of data (of multiple
. T, e " | classes) onto this direction is
“e T, / well separated.
'§1\.\ .‘ [ 4
%
worst best
1D subspace ’-‘-\ 1D subspace

What's being well separated? The group means of u;'s are far apart from
each other, and within each group, the variation/spread is small, i.e.,
minimize the following ratio

Between group variation  a‘Ba
Within group variation  atWa’




The within-class and between-class sample covariance matrices

Wy = - ﬂk)t
k 1z yi=k
By = an ITL )(£ry, — ﬁ)t
The following equalities are trivial.
X1 = X1- ﬂyl + ﬂy1
X2 = X2~ ﬂyQ + ilyQ
X, = X, — ﬂyn -+ ﬂyn

You can view W as the sample covariance matrix over x; — [, (same as the
pooled sample covariance matrix ¥ in LDA), and B as the sample covariance

matrix over the K class centers 1, .
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Generalized Eigenvalue Problem

t
a'Ba :
max — maxa’'Ba subjto a'Wa = 1.
a atWa a

1/2

Assume W = UD2U". Define b = W " a, where W := UDU" is symmetric

L Ry o
and write its inverse as W~ = UD~1U?.

; PRV —1/2 —1/2 1/2
aBa = aW W BW W a

1/2

= w”a)'w "BW “(W"a)

= bW “BW b, subjto|b|?=1.

The optimization above is a classical eigenvalue problem!




We can solve the directions sequentially as follows

e b; = the 1st eigen-vector of matrix W BW ™" then solve
—1/2
=W ' b;.

e b, = the 2nd eigen-vector of matrix W_l/zBW_m, then solve
— W "b,.

e Note that although b;’s are orthonormal, but a;’s are not:
b;bb7 — 1, a?Waj =1
b;bl = O, az-Wal = 0.

e We can extract at most (K — 1) directions, since the rank of B is

(K —1). The (K — 1) directions span exactly the same space as the one

from the reduced rank LDA. . .
Connection with reduced rank LDA

Con8|der a simple case :W =1, then
“lwhat's the (K-1)-dim space spanned
by eigenvectors of B?



LDA vs FDA

e LDA: a classifier.

e FDA: a dimension reduction method, i.e., the output of FDA is a set of

directions, but not a classification rule.

e The normal assumption is never mentioned in FDA, but why the space

from FDA is similar to the reduced space from LDA?

FDA implicitly assumes the data from each group follows or approximately

follows a normal distribution with the same covariance matrix.

Dimension reduction algorithm

FDAis a : 20

PCA is unsupervised.

FDA can be applied on regression too.

What out for overfitting.



b {6x1}

We can project the 6-dim feature space
INto a one-dim space, such as the
projections for the blue = 1, and red = 0.

So two-classes are well-separated.



LDA & QDA in High Dimension

e Singularity of the Covariance Matrix When dimension p is large, the inverse
of 3. for 3, may not exist. For example, if p > n, 3, the p X p covariance

AN

matrix for LDA, is of rank less than n. So we cannot compute X 1.

But smgularlty Is not a serlous |ssue and we have discussed how to fix

smgularlty for LDA and QDA A more serious issue is overflttmg

e When dimension p is large, even LDA could end up overfitting the data:
one can show that when p gets large, LDA could behave like random

guessing (i.e., classification error = 0.5).

e Regularization: restrict matrices/vectors to be sparse (e.g., sparse LDA or

regularization DA), or restrict features to be independent (NaiveBayes).
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Naive Bayes

e Recall: for multi-class problems the optimal decision rule is

arg mI?XIP)(Y = k| X =x) = arg max Tk 1 (X).

e Require fr(x) to be

i.e., each dim of x is independent (You can view independence as

regularization for high-dimensional problems).

e Then each density fkj (] =1: 2 k: —1: K) is estimated separately within

each class. E.g., discrete features via hlstograms numerical features via

kernel density estimates (nonparametrlc NB) or normal densrtles

(parametric NB). How many parameters for

., 1parametric f_k” A product of

'iIndependent one-dim normals: p |
'means, p variances. |




Summary of Parametric Naive Bayes

S
® lraming Parameters:
— Input: (X, ¥i)i, pi. K-by-1

— Output: (Wka(lukjval%j)jzlip)le mu: K-by-p

sigmasq: K-by-p

e Make Prediction

— Input: test point x* and output from Training

— For k = 1:K, compute

* 2
1 (2F —pp1)> 1 k)
_ 5 752
20 %L
(& k1l e P

dp. (X*) = -9 log [Wk > e
V k1 v/ Tiep

- 2 Tj — Hks)’
= —2logm; + Z {logakj + - }
j=1 kj

— Output: arg ming dg(x*).
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Summary: Discriminant Analysis

In Discriminant Analysis (DA), we estimate the joint
PX =x,Y =k)=P(X =x|Y =k) x P(Y = k),
and then obtain P(Y = k|X = x).

DA is conceptually simple and works for some low-dimensional problems,

but not an effective way of building classifiers.

P(x,y) =P(Y=y | X=x) P(X=x)

V2R BN

Joint dist Marginal of Y

Dist of p-dim X given Y=k: QDA, LDA (FDA), NB



For example, for binary LDA with discriminant function (1):
di(x) = =2x'S7 1y, + pi s tu, — 2log

What matters is the decision boundary which is a linear function has

(p + 1) parameters:

dy(x) — da(x) = =2x'8 7 (g — py) + o = x'B + fo.

However, we estimate (3, By) by learning a much larger collection of

b e

parameters such as >, @, o and my.

e Next we'll discuss how to directly learn P(Y = k| X = x) (e.g., logistic
regression, tree models) or directly learn the decision boundary (e.g.,

SVM).
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