Summary: Discriminant Analysis

1. Limitation and advantages of LDA/NB
2. Suggest to use screening procedures to reduce p
3. In general, do not recommend QDA; check RDA

P(x, y) = P(X=x)
= P(Y=y)
/ | N
Joint dist Marginal of Y

Dist of p-dim X given Y=k: QDA, LDA (FDA), NB



Data
123 ...... p

LDA in High-dim

Parameters need to estimate
mu_1, mu_2, Sigma, pi_1
What we need is inverse of Sigma



Data
123 ...... p

LDA in High-dim
Each element of mu_k’s and

Parameters need to estimate Sigma can be reliably estimated
mu_1, mu_2, Sigma, pi_1 with a reasonable sample size.

What we need is inverse of Sigma |However, Sigma_inverse is
error-prone.



How accurately can we estimate the first PC direction?

X_1, ..., X_n are iid N(0, Sigma)
set.seed (123)

n=500; . :
p.seqzseq(]_ol 300, by:lO) TI’UG Slgma — dlag(Z, 1, “uny 1)
m = length (p.seq) True PC1 =c¢(1,0, ..., 0)
mycor = rep(0, m)

for(i in 1:m) { _

p.seq[i] Plot the correlation of True PC1 and
SRR (e () , W, D) the estimated one.

X[, 1] = X[, 1]*sqrt(2)

tmp = cov (X)

pcl = svd(tmp)Sul[,1]

mycor[i] = pcl[1l]

plot (p.seq, abs (mycor),
ylab="Correlation",
xlab="Dimension" )



How accurately can we estimate the first PC direction?

set.seed (123)
n=500;
p.seg=seq (10, 300, by=10)
m = length(p.seq)
mycor = rep (0, m)
for(i in 1:m) {
P = p.seq[i]

X = matrix(rnorm(n*p), n, p)

X[, 1] = X[, 1]*sqrt(2)
tmp = cov (X)
pcl = svd(tmp)Sul[,1]
mycor[i] = pcl[1l]

}

plot(p.seq, abs (mycor),
ylab="Correlation",
xlab="Dimension" )

Correlation

X_1, ..., X_n are iid N(0, Sigma)

True Sigma =diag(2, 1, ..., 1)
True PC1 =c¢(1, 0, ..., 0)

Plot the correlation of True PC1 and
the estimated one.
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Data

123 ...... P
1
0 Wait ~~~ We do not need
' the whole Sigma_inverse
matrix to be accurate.
What we need is the
accuracy of 1ts inner
LDA in High-dim product with (mul - mu?2)
Each element of mu_k’s and
Parameters need to estimate Sigma can be reliably estimated
mul, mu2, Sigma, pi_1 with a reasonable sample size.

What we need is inverse of Sigma |However, Sigma_inverse is
error-prone.



For example, for binary LDA with discriminant function (1):
di(x) = =2x'S 1y, + pi S tu, — 2log

What matters is the decision boundary which is a linear function has

(p + 1) parameters:

dy(x) — da(x) = =2x'8 7 (g — py) + o = x'B + fo.

However, we estimate (3, By) by learning a much larger collection of

b e

parameters such as >, @, o and my.

e Next we'll discuss how to directly learn P(Y = k| X = x) (e.g., logistic

regression, tree models) or directly learn the decision boundary (e.g.,

SVM).
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Should We Worry About the Normality Assumption?

The Annals of Statistics
1984, Vol. 12, No. 3, 793-815

ASYMPTOTICS OF GRAPHICAL PROJECTION PURSUIT

By PERSI DiAcoNIS' AND DAVID FREEDMAN®
Stanford University and University of California, Berkeley

Mathematical tools are developed for describing low-dimensional projec-
tions of high-dimensional data. Theorems are given to show that under
suitable conditions, most projections are approximately aussin.




Summary: Discriminant Analysis

In Discriminant Analysis (DA), we estimate the joint

P(X =x,Y =k)=P(X =x|Y =k) x P(Y = k),

Can Naturally incorporate

unlabelled data.
DA is conceptually simple and works for some low-dimensional problems,

and then obtain P(Y = k|X = x).

but not an effective way of building classifiers.

P(x,y) =P(Y=y | X=x) P(X=x)

V2R BN

Joint dist Marginal of Y

Dist of p-dim X given Y=k: QDA, LDA (FDA), NB



Labelled Data

Unlabelled Data

The underlying model assumption for (X,Y) is the same.
1. LDA: Y is given

2. EM tor Mixture Model: Y is unknown latent variable
3. For semi-supervised learning, we can combine these two.



Image Classification: LDA+LDA

Input
Images

|

. Key Image
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Histogram of

Visual Words
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LDA: Latent Dirichlet Allocation
LDA: Linear Discriminant Analysis



Image Classification: LDA+LDA

Classify the three patterns:
LDA+LDA should work well; no need to use DL

LDA: Latent Dirichlet Allocation
LDA: Linear Discriminant Analysis



1 2 3 ------ p for j=1:p
Group 1:

1 x_[1,]
x_[2,]]

;(:[m, j]

Group O:
x_[n1+1,j]
X_[n1+2,]]

X_[n1+n0,j]

LDA/NB in High-dim

Pre-screening variables to reduce p,
e.g., two-sample t-test, or its variants

Rank the p-values for the p features, and
drop features with large p-values.



Regularized Discriminant Analysis

RDA uses the following regularized covariance matrix

Group Sigma=  2x(A\7)
Average of three

L

(1 —7)Sk(V) +7%tr[2k<x>]1p,

INOY (1= A)2k + A%,

with A,y € [0,1] ® Large values indicate higher degrees of regularization.
e (y=0,\=0): QDA (individual cov for each class).
e (y=0,A=1): LDA (shared cov matrix).

e (v=1,A=0): Variables are conditionally independent with equal

class-specific variance; similar to Naive Bayes.

e (=1, =1): Nearest centroid (objects are assigned to group with

nearest mean with euclidean distance).



> x=rep (c ("A" , "B" , "C") ,

times=c(2, 3, 1))
> X = as.factor (X)
> y = rnorm(6)
> fitl = 1m(y~X)
> model .matrix(£fitl)
(Intercept) XB XC
1 O
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1
attr(,"assign")
[1] 0 1 1

attr (,"contrasts")
attr (,"contrasts") $X
[1] "contr.treatment”

Factors: Ordered or Unordered?

> fit2 = 1m(y~X-1)
> model .matrix (£it2)
XA XB XC

1 |1 0 O
2 11 0 O
3 (0 1 O
4 ([0 1 O
5 (0 1 O
6 |10 0 1
attr(,"assign")
[1] 1 1 1

attr (,"contrasts")
attr(,"contrasts") $X
[1] "contr.treatment"



Factors: Ordered or Unordered?

> attr (X, "contrasts'") =

> attr (X, "contrasts") = contr.poly (3)

contr.sum(3) > contrasts (X)
> contrasts (X) L Q

[,1]1 [,2] [1,] -0.707 0.408

; 1 2 [2,] 0.000 -0.816
0 [3,] 0.707 0.408
3 -1 -1

> fitd4d = 1lm(y~X)
> model .matrix(£fit4)
(Intercept) X.L X.0

> fit3 = 1Im(y~X)
> model .matrix (£it3)
(Intercept) X1 X2

1 1 -0.707 0.40
1 1 1 0 2 1 -0.707 0.408
2 1 1 0 3 1 0.000 -0.816
3 1 0 1 4 1 0.000 -0.816
4 1 0 1 5 1 0.000 -0.816
5 1 0 1 6 1 0.707 0.408
6 1 -1 -1




> XX =
> contrasts (XX)
L

[1,] -0.707 0.40
0.000 -0.816

[2,]

Q

8

factor (X, ordered=TRUE)

[3,] 0.707 0.408

> fitd = Im(y ~ XX)

> model .matrix (£it)h)
(Intercept) XX.L XX.0Q

1 1 -0.707 0.408

2 1 -0.707 0.408

3 1 0.000 -0.816

4 1 0.000 -0.816

5 1 0.000 -0.816

6 1 0.707 0.408

attr(,"assign")

[1] O 1 1

attr(,"contrasts")

attr (,"contrasts") $XX

[1]

"contr.poly"

> attr (X,

> contrasts (X)
L

[1,] -0.707 0.40
0.000 -0.816

[2,]

Factors: Ordered or Unordered?

Q
8

"contrasts")
contr.poly (3)

[3,] 0.707 0.408

> fitd4d = 1lm(y~X)

> model .matrix(£fit4)
(Intercept) X.L X.0

1 1 -0.707 0.40

2 1 -0.707 0.408

3 1 0.000 -0.816

4 1 0.000 -0.816

5 1 0.000 -0.816

6 1 0.707 0.408




myout
myout
myout
myout
myout

VVVVYV

v

myout

.4140462
.4140462
.4140462
.4140462
.4140462

myout

O OO OO0

(Intercept)

.007923035
.007923035
.564164552
.564164552
.564164552

-0.
-0.

0.
-0.
-0.

XB

8786437
8707206
5720876
5922861
5922861

c (summary (fitl) $sigma, fitlScoef)
rbind (myout, c(summary(£it2)$sigma, fit2Scoef))
rbind (myout, c(summary (£it3)$sigma, fit3Scoef))
rbind (myout, c(summary(£fit4d)S$sigma, fitdScoef))
rbind (myout, c(summary (£it5)$sigma, fit5Scoef))

-0.
-0.
-0.
0.
0.

Factors: Ordered or Unordered?

XC
8376191 treatment
8296961 naive
3065561 Sum
3754530 poly
3754530 ordered

No difference for linear model (of course, coefficients
are different, but prediction is the same)
May lead to different variable selection result



