Summary: Discriminant Analysis

- 1. Limitation and advantages of LDA/NB
- 2. Suggest to use screening procedures to reduce p
- 3. In general, do not recommend QDA; check RDA

Dist of p-dim X given Y=k: QDA, LDA (FDA), NB

LDA in High-dim

Parameters need to estimate mu_1, mu_2, Sigma, pi_1 What we need is **inverse of Sigma**

LDA in High-dim

Parameters need to estimate mu_1, mu_2, Sigma, pi_1 What we need is **inverse of Sigma** Each element of mu_k's and Sigma can be reliably estimated with a reasonable sample size. However, Sigma_inverse is error-prone.

How accurately can we estimate the first PC direction?

```
set.seed(123)
n=500;
p.seq=seq(10, 300, by=10)
m = length(p.seq)
mycor = rep(0, m)
for(i in 1:m) {
  p = p.seq[i]
  X = matrix(rnorm(n*p), n, p)
  X[, 1] = X[, 1]*sqrt(2)
  tmp = cov(X)
  pc1 = svd(tmp) u[,1]
  mycor[i] = pc1[1]
plot(p.seq, abs(mycor),
  ylab="Correlation",
  xlab="Dimension" )
```

```
X_1, ..., X_n are iid N(0, Sigma)
```

```
True Sigma = diag(2, 1, ..., 1)
True PC1 = c(1, 0, ..., 0)
```

Plot the correlation of True PC1 and the estimated one.

How accurately can we estimate the first PC direction?

```
set.seed(123)
n=500;
p.seq=seq(10, 300, by=10)
m = length(p.seq)
mycor = rep(0, m)
for(i in 1:m) {
  p = p.seq[i]
  X = matrix(rnorm(n*p), n, p)
  X[, 1] = X[, 1]*sqrt(2)
  tmp = cov(X)
  pc1 = svd(tmp) u[,1]
  mycor[i] = pc1[1]
plot(p.seq, abs(mycor),
  ylab="Correlation",
  xlab="Dimension" )
```

```
X_1, ..., X_n are iid N(0, Sigma)
```

```
True Sigma = diag(2, 1, ..., 1)
True PC1 = c(1, 0, ..., 0)
```

Plot the correlation of True PC1 and the estimated one.

Wait ~~~ We do not need the whole Sigma_inverse matrix to be accurate. What we need is the accuracy of its inner product with (mu1 - mu2)

LDA in High-dim

Parameters need to estimate mu1, mu2, Sigma, pi_1
What we need is **inverse of Sigma**

Each element of mu_k's and Sigma can be reliably estimated with a reasonable sample size. However, Sigma_inverse is error-prone.

For example, for binary LDA with discriminant function (1):

$$d_k(\mathbf{x}) = -2\mathbf{x}^t \Sigma^{-1} \boldsymbol{\mu}_k + \boldsymbol{\mu}_k^T \Sigma^{-1} \boldsymbol{\mu}_k - 2\log \pi_k$$

What matters is the decision boundary which is a linear function has (p+1) parameters:

$$d_1(\mathbf{x}) - d_2(\mathbf{x}) = -2\mathbf{x}^t \Sigma^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) + \beta_0 = \mathbf{x}^t \boldsymbol{\beta} + \beta_0.$$

However, we estimate (β, β_0) by learning a much larger collection of parameters such as Σ , μ_1 , μ_2 and π_1 .

• Next we'll discuss how to directly learn $P(Y=k|X=\mathbf{x})$ (e.g., logistic regression, tree models) or directly learn the decision boundary (e.g., SVM).

Should We Worry About the Normality Assumption?

The Annals of Statistics 1984, Vol. 12, No. 3, 793–815

ASYMPTOTICS OF GRAPHICAL PROJECTION PURSUIT

By Persi Diaconis¹ and David Freedman²

Stanford University and University of California, Berkeley

Mathematical tools are developed for describing low-dimensional projections of high-dimensional data. Theorems are given to show that under suitable conditions, most projections are approximately Gaussian.

Summary: Discriminant Analysis

In Discriminant Analysis (DA), we estimate the joint

$$P(X = \mathbf{x}, Y = k) = P(X = \mathbf{x}|Y = k) \times P(Y = k),$$

and then obtain $P(Y = k | X = \mathbf{x})$.

Can Naturally incorporate unlabelled data.

DA is conceptually simple and works for some low-dimensional problems, but not an effective way of building classifiers.

Dist of p-dim X given Y=k: QDA, LDA (FDA), NB

The underlying model assumption for (X,Y) is the same.

- 1. LDA: Y is given
- 2. EM for Mixture Model: Y is unknown latent variable
- 3. For **semi-supervised learning**, we can combine these two.

Image Classification: LDA+LDA

LDA: Latent Dirichlet Allocation

LDA: Linear Discriminant Analysis

Image Classification: LDA+LDA

Classify the three patterns: LDA+LDA should work well; no need to use DL

LDA: Latent Dirichlet Allocation

LDA: Linear Discriminant Analysis

LDA/NB in High-dim

Pre-screening variables to reduce p, e.g., two-sample t-test, or its variants

Rank the p-values for the p features, and drop features with large p-values.

Regularized Discriminant Analysis

RDA uses the following regularized covariance matrix

Group Sigma = Average of three

$$\hat{\Sigma}_{k}(\lambda, \gamma) = (1 - \gamma)\hat{\Sigma}_{k}(\lambda) + \gamma \frac{1}{p} \text{tr}[\hat{\Sigma}_{k}(\lambda)] \underline{I}_{p},$$

$$\hat{\Sigma}_{k}(\lambda) \equiv (1 - \lambda)\hat{\Sigma}_{k} + \lambda\hat{\Sigma},$$

with $\lambda, \gamma \in [0, 1]$ a Large values indicate higher degrees of regularization.

- $(\gamma = 0, \lambda = 0)$: QDA (individual cov for each class).
- $(\gamma = 0, \lambda = 1)$: LDA (shared cov matrix).
- $(\gamma=1,\lambda=0)$: Variables are conditionally independent with equal class-specific variance; similar to Naive Bayes.
- $(\gamma = 1, \lambda = 1)$: Nearest centroid (objects are assigned to group with nearest mean with euclidean distance).

```
> X=rep(c("A", "B", "C"),
    times=c(2, 3, 1))
> X = as.factor(X)
> y = rnorm(6)
> fit1 = lm(y~X)
> model.matrix(fit1)
  (Intercept) XB XC
attr(,"assign")
[1] 0 1 1
attr(,"contrasts")
attr(,"contrasts")$X
[1] "contr.treatment"
```

```
> fit2 = lm(y~X-1)
> model.matrix(fit2)
  XA XB XC
 1 0 0
  0 1 0
attr(,"assign")
[1] 1 1 1
attr(,"contrasts")
attr(,"contrasts")$X
[1] "contr.treatment"
```

```
> attr(X, "contrasts") =
            contr.sum(3)
> contrasts(X)
  [,1] [,2]
> fit3 = lm(y~X)
> model.matrix(fit3)
  (Intercept) X1 X2
2
3
4
5
```

```
> attr(X, "contrasts") =
               contr.poly(3)
> contrasts(X)
[1,] -0.707 0.408
[2,] 0.000 -0.816
[3,] 0.707 0.408
> fit4 = lm(y~X)
> model.matrix(fit4)
  (Intercept)
                X.L
                        X.Q
            1 - 0.707 0.408
            1 -0.707 0.408
3
4
            1 0.000 -0.816
            1 0.000 -0.816
5
            1 0.000 -0.816
              0.707 0.408
```

```
> XX = factor(X, ordered=TRUE)
> contrasts(XX)
         L .Q
[1,1,-0.707,0.408]
[2,] 0.000 -0.816
[3,] 0.707 0.408
> fit5 = lm(y \sim XX)
> model.matrix(fit5)
  (Intercept) XX.L XX.Q
            1 -0.707 0.408
2
            1 - 0.707 0.408
            1 0.000 -0.816
4
            1 0.000 -0.816
5
            1 0.000 -0.816
            1 0.707 0.408
attr(,"assign")
[1] 0 1 1
attr(,"contrasts")
attr(,"contrasts")$XX
[1] "contr.poly"
```

```
> attr(X, "contrasts") =
               contr.poly(3)
> contrasts(X)
         . L
[1,] -0.707 0.408
[2,] 0.000 -0.816
[3,] 0.707 0.408
> fit4 = lm(y~X)
> model.matrix(fit4)
  (Intercept) X.L
                       X.Q
            1 -0.707 0.408
1
2
            1 - 0.707 0.408
3
            1 0.000 -0.816
            1 0.000 -0.816
5
            1 0.000 -0.816
            1 0.707 0.408
```

```
> myout = c(summary(fit1)$sigma, fit1$coef)
> myout = rbind(myout, c(summary(fit2)$sigma, fit2$coef))
> myout = rbind(myout, c(summary(fit3)$sigma, fit3$coef))
> myout = rbind(myout, c(summary(fit4)$sigma, fit4$coef))
> myout = rbind(myout, c(summary(fit5)$sigma, fit5$coef))
> myout
                  (Intercept)
                                       XB
                                                  XC
myout 0.4140462 0.007923035 -0.8786437 -0.8376191 treatment
      0.4140462 \quad 0.007923035 \quad -0.8707206 \quad -0.8296961
                                                      naive
      0.4140462 - 0.564164552 \ 0.5720876 - 0.3065561
                                                      sum
                                                       poly
      0.4140462 - 0.564164552 - 0.5922861 0.3754530
      0.4140462 -0.564164552 -0.5922861 0.3754530 ordered
```

Ordered or unordered: does it make any difference?

- No difference for linear model (of course, coefficients are different, but prediction is the same)
- May lead to different variable selection result